Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -12,61 +12,58 @@ DEFAULT_MAX_NEW_TOKENS = 1024
|
|
12 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
13 |
|
14 |
DESCRIPTION = """\
|
15 |
-
|
16 |
-
|
17 |
-
This Space demonstrates the ZhongJing-2-1_8b model, a fine-tuned model for chat instructions. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also deploy the model on Inference Endpoints.
|
18 |
"""
|
19 |
|
20 |
LICENSE = """
|
21 |
-
|
22 |
<p/>
|
23 |
---
|
24 |
-
|
25 |
"""
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
padding_side="right",
|
38 |
-
trust_remote_code=True,
|
39 |
-
pad_token=''
|
40 |
-
)
|
41 |
|
42 |
-
@spaces.
|
43 |
def generate(
|
44 |
message: str,
|
45 |
-
chat_history: list[tuple[str, str]],
|
46 |
-
system_prompt: str,
|
47 |
max_new_tokens: int = 1024,
|
48 |
temperature: float = 0.6,
|
49 |
-
top_p: float = 0.9,
|
50 |
top_k: int = 50,
|
51 |
repetition_penalty: float = 1.2,
|
52 |
) -> Iterator[str]:
|
53 |
-
conversation = []
|
54 |
-
if system_prompt:
|
55 |
-
conversation.append({"role": "system", "content": system_prompt})
|
56 |
-
for user, assistant in chat_history:
|
57 |
-
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
58 |
-
conversation.append({"role": "user", "content": message})
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
62 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
63 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
64 |
-
input_ids = input_ids.to(model.device)
|
65 |
|
66 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
67 |
generate_kwargs = dict(
|
68 |
input_ids=input_ids,
|
69 |
-
streamer=streamer,
|
70 |
max_new_tokens=max_new_tokens,
|
71 |
do_sample=True,
|
72 |
top_p=top_p,
|
@@ -83,54 +80,55 @@ def generate(
|
|
83 |
outputs.append(text)
|
84 |
yield "".join(outputs)
|
85 |
|
86 |
-
chat_interface = gr.
|
87 |
fn=generate,
|
88 |
-
|
89 |
-
gr.Textbox(label="
|
90 |
-
gr.Slider(
|
91 |
label="Max new tokens",
|
92 |
-
minimum=1,
|
93 |
maximum=MAX_MAX_NEW_TOKENS,
|
94 |
step=1,
|
95 |
value=DEFAULT_MAX_NEW_TOKENS,
|
96 |
),
|
97 |
-
gr.Slider(
|
98 |
label="Temperature",
|
99 |
minimum=0.1,
|
100 |
maximum=4.0,
|
101 |
-
step=0.1,
|
102 |
value=0.6,
|
103 |
),
|
104 |
-
gr.Slider(
|
105 |
label="Top-p (nucleus sampling)",
|
106 |
minimum=0.05,
|
107 |
maximum=1.0,
|
108 |
step=0.05,
|
109 |
value=0.9,
|
110 |
),
|
111 |
-
gr.Slider(
|
112 |
label="Top-k",
|
113 |
minimum=1,
|
114 |
maximum=1000,
|
115 |
step=1,
|
116 |
value=50,
|
117 |
),
|
118 |
-
gr.Slider(
|
119 |
-
label="Repetition penalty",
|
120 |
minimum=1.0,
|
121 |
maximum=2.0,
|
122 |
step=0.05,
|
123 |
value=1.2,
|
124 |
),
|
125 |
],
|
126 |
-
|
|
|
|
|
|
|
127 |
examples=[
|
128 |
-
["
|
129 |
-
["
|
130 |
-
["
|
131 |
-
|
132 |
-
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
133 |
-
],
|
134 |
)
|
135 |
|
136 |
with gr.Blocks(css="style.css") as demo:
|
@@ -140,4 +138,4 @@ with gr.Blocks(css="style.css") as demo:
|
|
140 |
gr.Markdown(LICENSE)
|
141 |
|
142 |
if __name__ == "__main__":
|
143 |
-
demo.queue(max_size=20).launch()
|
|
|
12 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
13 |
|
14 |
DESCRIPTION = """\
|
15 |
+
仲景GPT-V2-1.8B
|
16 |
+
博极医源,精勤不倦。Unlocking the Wisdom of Traditional Chinese Medicine with AI.
|
|
|
17 |
"""
|
18 |
|
19 |
LICENSE = """
|
|
|
20 |
<p/>
|
21 |
---
|
22 |
+
This demo is governed by the original licenses of [ZhongJing-2-1_8b](https://huggingface.co/CMLM/ZhongJing-2-1_8b) and [Qwen1.5-1.8B-Chat](https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat).
|
23 |
"""
|
24 |
|
25 |
+
peft_model_id = "CMLM/ZhongJing-2-1_8b"
|
26 |
+
base_model_id = "Qwen/Qwen1.5-1.8B-Chat"
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto")
|
28 |
+
model.load_adapter(peft_model_id)
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
30 |
+
"CMLM/ZhongJing-2-1_8b",
|
31 |
+
padding_side="right",
|
32 |
+
trust_remote_code=True,
|
33 |
+
pad_token=''
|
34 |
+
)
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
@spaces.gpu()
|
37 |
def generate(
|
38 |
message: str,
|
|
|
|
|
39 |
max_new_tokens: int = 1024,
|
40 |
temperature: float = 0.6,
|
41 |
+
top_p: float = 0.9,
|
42 |
top_k: int = 50,
|
43 |
repetition_penalty: float = 1.2,
|
44 |
) -> Iterator[str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
prompt = f"Question: {message}"
|
47 |
+
messages = [
|
48 |
+
{"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."},
|
49 |
+
{"role": "user", "content": prompt}
|
50 |
+
]
|
51 |
+
|
52 |
+
text = tokenizer.apply_chat_template(
|
53 |
+
messages,
|
54 |
+
tokenize=False,
|
55 |
+
add_generation_prompt=True
|
56 |
+
)
|
57 |
+
input_ids = tokenizer([text], return_tensors="pt").input_ids
|
58 |
+
|
59 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
60 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
61 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
|
|
62 |
|
63 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
64 |
generate_kwargs = dict(
|
65 |
input_ids=input_ids,
|
66 |
+
streamer=streamer,
|
67 |
max_new_tokens=max_new_tokens,
|
68 |
do_sample=True,
|
69 |
top_p=top_p,
|
|
|
80 |
outputs.append(text)
|
81 |
yield "".join(outputs)
|
82 |
|
83 |
+
chat_interface = gr.Interface(
|
84 |
fn=generate,
|
85 |
+
inputs=[
|
86 |
+
gr.components.Textbox(label="Enter your question"),
|
87 |
+
gr.components.Slider(
|
88 |
label="Max new tokens",
|
89 |
+
minimum=1,
|
90 |
maximum=MAX_MAX_NEW_TOKENS,
|
91 |
step=1,
|
92 |
value=DEFAULT_MAX_NEW_TOKENS,
|
93 |
),
|
94 |
+
gr.components.Slider(
|
95 |
label="Temperature",
|
96 |
minimum=0.1,
|
97 |
maximum=4.0,
|
98 |
+
step=0.1,
|
99 |
value=0.6,
|
100 |
),
|
101 |
+
gr.components.Slider(
|
102 |
label="Top-p (nucleus sampling)",
|
103 |
minimum=0.05,
|
104 |
maximum=1.0,
|
105 |
step=0.05,
|
106 |
value=0.9,
|
107 |
),
|
108 |
+
gr.components.Slider(
|
109 |
label="Top-k",
|
110 |
minimum=1,
|
111 |
maximum=1000,
|
112 |
step=1,
|
113 |
value=50,
|
114 |
),
|
115 |
+
gr.components.Slider(
|
116 |
+
label="Repetition penalty",
|
117 |
minimum=1.0,
|
118 |
maximum=2.0,
|
119 |
step=0.05,
|
120 |
value=1.2,
|
121 |
),
|
122 |
],
|
123 |
+
outputs="text",
|
124 |
+
title="仲景GPT-V2-1.8B",
|
125 |
+
description=DESCRIPTION,
|
126 |
+
allow_flagging=False,
|
127 |
examples=[
|
128 |
+
["请问气虚体质有哪些症状表现?"],
|
129 |
+
["简单介绍一下中医的五行学说。"],
|
130 |
+
["桑螵蛸是什么?有什么功效作用?"],
|
131 |
+
],
|
|
|
|
|
132 |
)
|
133 |
|
134 |
with gr.Blocks(css="style.css") as demo:
|
|
|
138 |
gr.Markdown(LICENSE)
|
139 |
|
140 |
if __name__ == "__main__":
|
141 |
+
demo.queue(max_size=20).launch()
|