File size: 17,513 Bytes
721557d
 
 
 
 
d3d822f
721557d
 
 
 
 
d3d822f
a3cbf26
d3d822f
a3cbf26
d3d822f
a3cbf26
d3d822f
a3cbf26
e6a017b
8fcc1b0
e6a017b
721557d
 
8fcc1b0
721557d
 
 
8fcc1b0
721557d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3d822f
721557d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3d822f
721557d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3d822f
721557d
 
d3d822f
721557d
 
d3d822f
721557d
 
 
 
 
 
d3d822f
721557d
 
d3d822f
721557d
 
d3d822f
721557d
 
d3d822f
721557d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3d822f
 
 
721557d
d3d822f
721557d
 
 
 
 
 
 
 
d3d822f
721557d
 
 
d3d822f
721557d
 
 
 
 
 
 
d3d822f
721557d
 
d3d822f
721557d
 
d3d822f
721557d
 
 
 
d3d822f
721557d
 
d3d822f
721557d
 
d3d822f
721557d
 
 
d3d822f
721557d
 
 
d3d822f
721557d
 
d3d822f
721557d
 
d3d822f
721557d
 
d3d822f
721557d
 
d3d822f
721557d
 
 
d3d822f
721557d
 
d3d822f
721557d
 
d3d822f
721557d
 
 
d3d822f
721557d
 
 
 
 
 
 
 
d3d822f
721557d
d3d822f
721557d
d3d822f
721557d
 
e6a017b
721557d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3d822f
721557d
e6a017b
721557d
 
 
 
 
 
 
 
 
 
 
 
 
9a4a6ce
721557d
 
e6a017b
721557d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fcc1b0
721557d
 
 
8fcc1b0
721557d
 
 
 
 
 
6932db3
721557d
 
 
e6a017b
721557d
 
e6a017b
721557d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
from PIL import Image, ImageDraw

# Import the model components from unet directory
from unet.unet_model import UNet

import streamlit as st
import plotly.express as px
import pandas as pd
import numpy as np
import torchvision.transforms as T

import torch
import pathlib
import io
import cv2
import tempfile

# Adjust Path for Local Repository
pathlib.WindowsPath = pathlib.PosixPath

st.title("Smart city rubbish detection Web Application")

def yolo():
    st.markdown(
        "<h1 style='text-align: center; font-size: 36px;'>Yolo object detection</h1>",
        unsafe_allow_html=True
    )
    st.markdown(
        "<h2 style='text-align: center; font-size: 30px;'>Using Yolov5</h2>",
        unsafe_allow_html=True
    )

    # Define the available labels
    default_sub_classes = [
        "container",
        "waste-paper",
        "plant",
        "transportation",
        "kitchenware",
        "rubbish bag",
        "chair",
        "wood",
        "electronics good",
        "sofa",
        "scrap metal",
        "carton",
        "bag",
        "tarpaulin",
        "accessory",
        "rubble",
        "table",
        "board",
        "mattress",
        "beverage",
        "tyre",
        "nylon",
        "rack",
        "styrofoam",
        "clothes",
        "toy",
        "furniture",
        "trolley",
        "carpet",
        "plastic cup"
    ]

    # Initialize session state for video processing
    if 'video_processed' not in st.session_state:
        st.session_state.video_processed = False
        st.session_state.output_video_path = None
        st.session_state.detections_summary = None

    # Cache the model loading to prevent repeated loads
    @st.cache_resource
    def load_model():
        model = torch.hub.load('./yolov5', 'custom', path='./model/yolo/best.pt', source='local', force_reload=False)
        return model

    model = load_model()

    # Retrieve model class names
    model_class_names = model.names  # Dictionary {index: class_name}

    # Function to map class names to indices (case-insensitive)
    def get_class_indices(class_list):
        indices = []
        not_found = []
        for cls in class_list:
            found = False
            for index, name in model_class_names.items():
                if name.lower() == cls.lower():
                    indices.append(index)
                    found = True
                    break
            if not found:
                not_found.append(cls)
        return indices, not_found

    # Function to annotate images
    def annotate_image(frame, results):
        results.render()  # Updates results.ims with the annotated images
        annotated_frame = results.ims[0]  # Get the first (and only) image
        return annotated_frame

    # Inform the user about the available labels
    st.markdown("### Available Classes:")
    st.markdown("**" + ", ".join(default_sub_classes + ["rubbish"]) + "**")

    # Inform the user about the default detection
    st.info("By default, the application will detect **rubbish** only.")

    # User input for classes, separated by commas (optional)
    custom_classes_input = st.text_input(
        "Enter classes (comma-separated) or type 'all' to detect everything:",
        ""
    )

    # Retrieve all model classes
    all_model_classes = list(model_class_names.values())

    # Determine classes to use based on user input
    if custom_classes_input.strip() == "":
        # No input provided; use only 'rubbish'
        selected_classes = ['rubbish']
        st.info("No classes entered. Using default class: **rubbish**.")
    elif custom_classes_input.strip().lower() == "all":
        # User chose to detect all classes
        selected_classes = all_model_classes
        st.info("Detecting **all** available classes.")
    else:
        # User provided specific classes
        # Split the input string into a list of classes and remove any extra whitespace
        input_classes = [cls.strip() for cls in custom_classes_input.split(",") if cls.strip()]
        # Ensure 'rubbish' is included
        if 'rubbish' not in [cls.lower() for cls in input_classes]:
            selected_classes = input_classes + ['rubbish']
            st.info(f"Detecting the following classes: **{', '.join(selected_classes)}** (Including **rubbish**)")
        else:
            selected_classes = input_classes
            st.info(f"Detecting the following classes: **{', '.join(selected_classes)}**")

    # Map selected class names to their indices
    selected_class_indices, not_found_classes = get_class_indices(selected_classes)

    if not_found_classes:
        st.warning(f"The following classes were not found in the model and will be ignored: **{', '.join(not_found_classes)}**")

    # Proceed only if there are valid classes to detect
    if selected_class_indices:
        # Set the classes for the model
        model.classes = selected_class_indices

        # --------------------- Image Upload and Processing ---------------------
        st.header("Image Object Detection")

        uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"], key="image_upload")

        if uploaded_file is not None:
            try:
                # Convert the file to a PIL image
                image = Image.open(uploaded_file).convert('RGB')
                st.image(image, caption="Uploaded Image", use_column_width=True)
                st.write("Processing...")

                # Perform inference
                results = model(image)

                # Extract DataFrame from results
                results_df = results.pandas().xyxy[0]

                # Filter results to include only selected classes
                filtered_results = results_df[results_df['name'].str.lower().isin([cls.lower() for cls in selected_classes])]

                if filtered_results.empty:
                    st.warning("No objects detected for the selected classes.")
                else:
                    # Display filtered results
                    st.write("### Detection Results")
                    st.dataframe(filtered_results)

                # Annotate the image
                annotated_image = annotate_image(np.array(image), results)

                # Convert annotated image back to PIL format
                annotated_pil = Image.fromarray(annotated_image)

                # Display annotated image
                st.image(annotated_pil, caption="Annotated Image", use_column_width=True)

                # Convert annotated image to bytes
                img_byte_arr = io.BytesIO()
                annotated_pil.save(img_byte_arr, format='PNG')
                img_byte_arr = img_byte_arr.getvalue()

                # Add download button
                st.download_button(
                    label="Download Annotated Image",
                    data=img_byte_arr,
                    file_name='annotated_image.png',
                    mime='image/png'
                )
            except Exception as e:
                st.error(f"An error occurred during image processing: {e}")

        # --------------------- Video Upload and Processing ---------------------
        st.header("Video Object Detection")

        uploaded_video = st.file_uploader("Choose a video...", type=["mp4", "avi", "mov"], key="video_upload")

        if uploaded_video is not None:
            # Check if the uploaded video is different from the previously processed one
            # Check if the uploaded video first time
            if st.session_state.get("uploaded_video_name") is None:
                st.session_state.uploaded_video_name = uploaded_video.name
                print("First time uploaded video" +st.session_state.uploaded_video_name)
            elif st.session_state.uploaded_video_name != uploaded_video.name:
                st.session_state.uploaded_video_name = uploaded_video.name
                print("Another time uploaded video" +st.session_state.uploaded_video_name)
                st.session_state.video_processed = False
                st.session_state.output_video_path = None
                st.session_state.detections_summary = None
                print("New uploaded video")
        
        # Reset session state if video upload is removed
        if uploaded_video is None and st.session_state.video_processed:
            st.session_state.video_processed = False
            st.session_state.output_video_path = None
            st.session_state.detections_summary = None
            st.warning("Video upload has been cleared. You can upload a new video for processing.")

        if uploaded_video:
            if not st.session_state.video_processed:
                try:
                    with st.spinner("Processing video..."):
                        # Save uploaded video to a temporary file
                        tfile = tempfile.NamedTemporaryFile(delete=False)
                        tfile.write(uploaded_video.read())
                        tfile.close()

                        # Open the video file
                        video_cap = cv2.VideoCapture(tfile.name)
                        stframe = st.empty()  # Placeholder for displaying video frames

                        # Initialize VideoWriter for saving the output video
                        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
                        fps = video_cap.get(cv2.CAP_PROP_FPS)
                        width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        output_video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
                        out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))

                        frame_count = int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT))
                        progress_bar = st.progress(0)

                        # Initialize list to collect all detections
                        all_detections = []

                        for frame_num in range(frame_count):
                            ret, frame = video_cap.read()  # Read a frame from the video
                            if not ret:
                                break

                            # Convert frame to RGB
                            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

                            # Perform inference
                            results = model(frame_rgb)

                            # Extract DataFrame from results
                            results_df = results.pandas().xyxy[0]
                            results_df['frame_num'] = frame_num  # Optional: Add frame number for reference

                            # Append detections to the list
                            if not results_df.empty:
                                all_detections.append(results_df)

                            # Annotate the frame with detections
                            annotated_frame = annotate_image(frame_rgb, results)

                            # Convert annotated frame back to BGR for VideoWriter
                            annotated_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR)

                            # Write the annotated frame to the output video
                            out.write(annotated_bgr)

                            # Display the annotated frame in Streamlit
                            stframe.image(annotated_frame, channels="RGB", use_column_width=True)

                            # Update progress bar
                            progress_percent = (frame_num + 1) / frame_count
                            progress_bar.progress(progress_percent)

                        video_cap.release()  # Release the video capture object
                        out.release()  # Release the VideoWriter object

                    # Save processed video path and detections summary to session state
                    st.session_state.output_video_path = output_video_path

                    if all_detections:
                        # Concatenate all detections into a single DataFrame
                        detections_df = pd.concat(all_detections, ignore_index=True)

                        # Optional: Group by class name and count detections
                        detections_summary = detections_df.groupby('name').size().reset_index(name='counts')
                        st.session_state.detections_summary = detections_summary
                    else:
                        st.session_state.detections_summary = None

                    # Mark video as processed
                    st.session_state.video_processed = True

                    # st.session_state.uploaded_video_name = uploaded_video.name

                    st.success("Video processing complete!")

                except Exception as e:
                    st.error(f"An error occurred during video processing: {e}")

        # Display download button and detection summary if processed
        if st.session_state.video_processed:
            try:
                # Create a download button for the annotated video
                with open(st.session_state.output_video_path, "rb") as video_file:
                    st.download_button(
                        label="Download Annotated Video",
                        data=video_file,
                        file_name="annotated_video.mp4",
                        mime="video/mp4"
                    )

                # Display detection table if there are detections
                if st.session_state.detections_summary is not None:
                    detections_summary = st.session_state.detections_summary

                    st.write("### Detection Summary")
                    st.dataframe(detections_summary)
                else:
                    st.warning("No objects detected in the video for the selected classes.")
            except Exception as e:
                st.error(f"An error occurred while preparing the download: {e}")

    # Optionally, display all available classes when 'all' is selected
    if custom_classes_input.strip().lower() == "all":
        st.info(f"The model is set to detect **all** available classes: {', '.join(all_model_classes)}")

# Unet model training configuration

# Constants
IMG_SIZE = 128  # Resize dimension for the input image

# Load model function
@st.cache_resource
def load_model():
    model = UNet(n_channels=3, n_classes=32)  # Adjust according to your model setup
    model.load_state_dict(torch.load("./model/unet/checkpoint_epoch5.pth", map_location="cpu", weights_only=True), strict=False)
    model.eval()
    return model

# Function to preprocess the image
def preprocess_image(image):
    transform = T.Compose([
        T.Resize((IMG_SIZE, IMG_SIZE)),  # Resize to match model input size
        T.ToTensor(),  # Convert to tensor
    ])
    image_tensor = transform(image).unsqueeze(0)  # Add batch dimension
    return image_tensor

# Function to postprocess the model output for display
def postprocess_mask(mask):
    # Convert mask to a numpy array and scale to 0-255
    mask_np = mask.squeeze().cpu().numpy()  # Remove batch and channel dimensions
    mask_np = (mask_np > 0.5).astype(np.uint8) * 255  # Binarize and scale to 0-255
    return mask_np

def unet():
    try:
        # Load the model
        model = load_model()

        st.markdown(
            "<h1 style='text-align: center; font-size: 36px;'>Unet object detection</h1>",
            unsafe_allow_html=True
        )
        st.markdown(
            "<h2 style='text-align: center; font-size: 30px;'>Using Unet - Pytorch</h2>",
            unsafe_allow_html=True
        )
        
        # Display the file upload widget
        uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
        if uploaded_file is not None:
            st.write("Processing...")
            # Open and display the uploaded image
            image = Image.open(uploaded_file).convert("RGB")
            st.image(image, caption="Uploaded Image", use_column_width=True)

            # Preprocess the image
            input_tensor = preprocess_image(image)

            # Perform inference
            with torch.no_grad():  # Disable gradient calculation for inference
                output = model(input_tensor)
                prediction = torch.sigmoid(output)  # Apply sigmoid to get probabilities

            # Post-process the mask for display
            mask = postprocess_mask(prediction[0, 0])  # Get the mask from the first batch item

            # Display the segmentation mask
            st.image(mask, caption="Segmentation Mask", use_column_width=True)
    except Exception as e:
        st.error(f"An error occurred in Unet: {e}")

# Main page
if 'model_selected' not in st.session_state:
    st.session_state.model_selected = None

def main():
    # Radio button for model selection with consistent casing
    option = st.radio("Select Model:", ("Unet", "YOLO"))

    # Submit button to confirm selection
    if st.button("Choose"):
        st.session_state.model_selected = option
        st.success(f"Selected Model: {st.session_state.model_selected}")

    # Render the selected model's interface based on session state
    if st.session_state.model_selected == "Unet":
        unet()
    elif st.session_state.model_selected == "YOLO":
        yolo()  

if __name__ == "__main__":
    main()