File size: 17,513 Bytes
721557d d3d822f 721557d d3d822f a3cbf26 d3d822f a3cbf26 d3d822f a3cbf26 d3d822f a3cbf26 e6a017b 8fcc1b0 e6a017b 721557d 8fcc1b0 721557d 8fcc1b0 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d d3d822f 721557d e6a017b 721557d d3d822f 721557d e6a017b 721557d 9a4a6ce 721557d e6a017b 721557d 8fcc1b0 721557d 8fcc1b0 721557d 6932db3 721557d e6a017b 721557d e6a017b 721557d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
from PIL import Image, ImageDraw
# Import the model components from unet directory
from unet.unet_model import UNet
import streamlit as st
import plotly.express as px
import pandas as pd
import numpy as np
import torchvision.transforms as T
import torch
import pathlib
import io
import cv2
import tempfile
# Adjust Path for Local Repository
pathlib.WindowsPath = pathlib.PosixPath
st.title("Smart city rubbish detection Web Application")
def yolo():
st.markdown(
"<h1 style='text-align: center; font-size: 36px;'>Yolo object detection</h1>",
unsafe_allow_html=True
)
st.markdown(
"<h2 style='text-align: center; font-size: 30px;'>Using Yolov5</h2>",
unsafe_allow_html=True
)
# Define the available labels
default_sub_classes = [
"container",
"waste-paper",
"plant",
"transportation",
"kitchenware",
"rubbish bag",
"chair",
"wood",
"electronics good",
"sofa",
"scrap metal",
"carton",
"bag",
"tarpaulin",
"accessory",
"rubble",
"table",
"board",
"mattress",
"beverage",
"tyre",
"nylon",
"rack",
"styrofoam",
"clothes",
"toy",
"furniture",
"trolley",
"carpet",
"plastic cup"
]
# Initialize session state for video processing
if 'video_processed' not in st.session_state:
st.session_state.video_processed = False
st.session_state.output_video_path = None
st.session_state.detections_summary = None
# Cache the model loading to prevent repeated loads
@st.cache_resource
def load_model():
model = torch.hub.load('./yolov5', 'custom', path='./model/yolo/best.pt', source='local', force_reload=False)
return model
model = load_model()
# Retrieve model class names
model_class_names = model.names # Dictionary {index: class_name}
# Function to map class names to indices (case-insensitive)
def get_class_indices(class_list):
indices = []
not_found = []
for cls in class_list:
found = False
for index, name in model_class_names.items():
if name.lower() == cls.lower():
indices.append(index)
found = True
break
if not found:
not_found.append(cls)
return indices, not_found
# Function to annotate images
def annotate_image(frame, results):
results.render() # Updates results.ims with the annotated images
annotated_frame = results.ims[0] # Get the first (and only) image
return annotated_frame
# Inform the user about the available labels
st.markdown("### Available Classes:")
st.markdown("**" + ", ".join(default_sub_classes + ["rubbish"]) + "**")
# Inform the user about the default detection
st.info("By default, the application will detect **rubbish** only.")
# User input for classes, separated by commas (optional)
custom_classes_input = st.text_input(
"Enter classes (comma-separated) or type 'all' to detect everything:",
""
)
# Retrieve all model classes
all_model_classes = list(model_class_names.values())
# Determine classes to use based on user input
if custom_classes_input.strip() == "":
# No input provided; use only 'rubbish'
selected_classes = ['rubbish']
st.info("No classes entered. Using default class: **rubbish**.")
elif custom_classes_input.strip().lower() == "all":
# User chose to detect all classes
selected_classes = all_model_classes
st.info("Detecting **all** available classes.")
else:
# User provided specific classes
# Split the input string into a list of classes and remove any extra whitespace
input_classes = [cls.strip() for cls in custom_classes_input.split(",") if cls.strip()]
# Ensure 'rubbish' is included
if 'rubbish' not in [cls.lower() for cls in input_classes]:
selected_classes = input_classes + ['rubbish']
st.info(f"Detecting the following classes: **{', '.join(selected_classes)}** (Including **rubbish**)")
else:
selected_classes = input_classes
st.info(f"Detecting the following classes: **{', '.join(selected_classes)}**")
# Map selected class names to their indices
selected_class_indices, not_found_classes = get_class_indices(selected_classes)
if not_found_classes:
st.warning(f"The following classes were not found in the model and will be ignored: **{', '.join(not_found_classes)}**")
# Proceed only if there are valid classes to detect
if selected_class_indices:
# Set the classes for the model
model.classes = selected_class_indices
# --------------------- Image Upload and Processing ---------------------
st.header("Image Object Detection")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"], key="image_upload")
if uploaded_file is not None:
try:
# Convert the file to a PIL image
image = Image.open(uploaded_file).convert('RGB')
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write("Processing...")
# Perform inference
results = model(image)
# Extract DataFrame from results
results_df = results.pandas().xyxy[0]
# Filter results to include only selected classes
filtered_results = results_df[results_df['name'].str.lower().isin([cls.lower() for cls in selected_classes])]
if filtered_results.empty:
st.warning("No objects detected for the selected classes.")
else:
# Display filtered results
st.write("### Detection Results")
st.dataframe(filtered_results)
# Annotate the image
annotated_image = annotate_image(np.array(image), results)
# Convert annotated image back to PIL format
annotated_pil = Image.fromarray(annotated_image)
# Display annotated image
st.image(annotated_pil, caption="Annotated Image", use_column_width=True)
# Convert annotated image to bytes
img_byte_arr = io.BytesIO()
annotated_pil.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
# Add download button
st.download_button(
label="Download Annotated Image",
data=img_byte_arr,
file_name='annotated_image.png',
mime='image/png'
)
except Exception as e:
st.error(f"An error occurred during image processing: {e}")
# --------------------- Video Upload and Processing ---------------------
st.header("Video Object Detection")
uploaded_video = st.file_uploader("Choose a video...", type=["mp4", "avi", "mov"], key="video_upload")
if uploaded_video is not None:
# Check if the uploaded video is different from the previously processed one
# Check if the uploaded video first time
if st.session_state.get("uploaded_video_name") is None:
st.session_state.uploaded_video_name = uploaded_video.name
print("First time uploaded video" +st.session_state.uploaded_video_name)
elif st.session_state.uploaded_video_name != uploaded_video.name:
st.session_state.uploaded_video_name = uploaded_video.name
print("Another time uploaded video" +st.session_state.uploaded_video_name)
st.session_state.video_processed = False
st.session_state.output_video_path = None
st.session_state.detections_summary = None
print("New uploaded video")
# Reset session state if video upload is removed
if uploaded_video is None and st.session_state.video_processed:
st.session_state.video_processed = False
st.session_state.output_video_path = None
st.session_state.detections_summary = None
st.warning("Video upload has been cleared. You can upload a new video for processing.")
if uploaded_video:
if not st.session_state.video_processed:
try:
with st.spinner("Processing video..."):
# Save uploaded video to a temporary file
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_video.read())
tfile.close()
# Open the video file
video_cap = cv2.VideoCapture(tfile.name)
stframe = st.empty() # Placeholder for displaying video frames
# Initialize VideoWriter for saving the output video
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = video_cap.get(cv2.CAP_PROP_FPS)
width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
frame_count = int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT))
progress_bar = st.progress(0)
# Initialize list to collect all detections
all_detections = []
for frame_num in range(frame_count):
ret, frame = video_cap.read() # Read a frame from the video
if not ret:
break
# Convert frame to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Perform inference
results = model(frame_rgb)
# Extract DataFrame from results
results_df = results.pandas().xyxy[0]
results_df['frame_num'] = frame_num # Optional: Add frame number for reference
# Append detections to the list
if not results_df.empty:
all_detections.append(results_df)
# Annotate the frame with detections
annotated_frame = annotate_image(frame_rgb, results)
# Convert annotated frame back to BGR for VideoWriter
annotated_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR)
# Write the annotated frame to the output video
out.write(annotated_bgr)
# Display the annotated frame in Streamlit
stframe.image(annotated_frame, channels="RGB", use_column_width=True)
# Update progress bar
progress_percent = (frame_num + 1) / frame_count
progress_bar.progress(progress_percent)
video_cap.release() # Release the video capture object
out.release() # Release the VideoWriter object
# Save processed video path and detections summary to session state
st.session_state.output_video_path = output_video_path
if all_detections:
# Concatenate all detections into a single DataFrame
detections_df = pd.concat(all_detections, ignore_index=True)
# Optional: Group by class name and count detections
detections_summary = detections_df.groupby('name').size().reset_index(name='counts')
st.session_state.detections_summary = detections_summary
else:
st.session_state.detections_summary = None
# Mark video as processed
st.session_state.video_processed = True
# st.session_state.uploaded_video_name = uploaded_video.name
st.success("Video processing complete!")
except Exception as e:
st.error(f"An error occurred during video processing: {e}")
# Display download button and detection summary if processed
if st.session_state.video_processed:
try:
# Create a download button for the annotated video
with open(st.session_state.output_video_path, "rb") as video_file:
st.download_button(
label="Download Annotated Video",
data=video_file,
file_name="annotated_video.mp4",
mime="video/mp4"
)
# Display detection table if there are detections
if st.session_state.detections_summary is not None:
detections_summary = st.session_state.detections_summary
st.write("### Detection Summary")
st.dataframe(detections_summary)
else:
st.warning("No objects detected in the video for the selected classes.")
except Exception as e:
st.error(f"An error occurred while preparing the download: {e}")
# Optionally, display all available classes when 'all' is selected
if custom_classes_input.strip().lower() == "all":
st.info(f"The model is set to detect **all** available classes: {', '.join(all_model_classes)}")
# Unet model training configuration
# Constants
IMG_SIZE = 128 # Resize dimension for the input image
# Load model function
@st.cache_resource
def load_model():
model = UNet(n_channels=3, n_classes=32) # Adjust according to your model setup
model.load_state_dict(torch.load("./model/unet/checkpoint_epoch5.pth", map_location="cpu", weights_only=True), strict=False)
model.eval()
return model
# Function to preprocess the image
def preprocess_image(image):
transform = T.Compose([
T.Resize((IMG_SIZE, IMG_SIZE)), # Resize to match model input size
T.ToTensor(), # Convert to tensor
])
image_tensor = transform(image).unsqueeze(0) # Add batch dimension
return image_tensor
# Function to postprocess the model output for display
def postprocess_mask(mask):
# Convert mask to a numpy array and scale to 0-255
mask_np = mask.squeeze().cpu().numpy() # Remove batch and channel dimensions
mask_np = (mask_np > 0.5).astype(np.uint8) * 255 # Binarize and scale to 0-255
return mask_np
def unet():
try:
# Load the model
model = load_model()
st.markdown(
"<h1 style='text-align: center; font-size: 36px;'>Unet object detection</h1>",
unsafe_allow_html=True
)
st.markdown(
"<h2 style='text-align: center; font-size: 30px;'>Using Unet - Pytorch</h2>",
unsafe_allow_html=True
)
# Display the file upload widget
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
st.write("Processing...")
# Open and display the uploaded image
image = Image.open(uploaded_file).convert("RGB")
st.image(image, caption="Uploaded Image", use_column_width=True)
# Preprocess the image
input_tensor = preprocess_image(image)
# Perform inference
with torch.no_grad(): # Disable gradient calculation for inference
output = model(input_tensor)
prediction = torch.sigmoid(output) # Apply sigmoid to get probabilities
# Post-process the mask for display
mask = postprocess_mask(prediction[0, 0]) # Get the mask from the first batch item
# Display the segmentation mask
st.image(mask, caption="Segmentation Mask", use_column_width=True)
except Exception as e:
st.error(f"An error occurred in Unet: {e}")
# Main page
if 'model_selected' not in st.session_state:
st.session_state.model_selected = None
def main():
# Radio button for model selection with consistent casing
option = st.radio("Select Model:", ("Unet", "YOLO"))
# Submit button to confirm selection
if st.button("Choose"):
st.session_state.model_selected = option
st.success(f"Selected Model: {st.session_state.model_selected}")
# Render the selected model's interface based on session state
if st.session_state.model_selected == "Unet":
unet()
elif st.session_state.model_selected == "YOLO":
yolo()
if __name__ == "__main__":
main() |