phonghaitran's picture
update new app.py
d3d822f
raw
history blame
12.8 kB
import streamlit as st
import torch
import pathlib
from PIL import Image
import io
import numpy as np
import cv2
import tempfile
import pandas as pd
# Adjust Path for Local Repository
pathlib.WindowsPath = pathlib.PosixPath
st.title("YOLO Object Detection Web App")
# Define the available labels
default_sub_classes = [
"container",
"waste-paper",
"plant",
"transportation",
"kitchenware",
"rubbish bag",
"chair",
"wood",
"electronics good",
"sofa",
"scrap metal",
"carton",
"bag",
"tarpaulin",
"accessory",
"rubble",
"table",
"board",
"mattress",
"beverage",
"tyre",
"nylon",
"rack",
"styrofoam",
"clothes",
"toy",
"furniture",
"trolley",
"carpet",
"plastic cup"
]
# Initialize session state for video processing
if 'video_processed' not in st.session_state:
st.session_state.video_processed = False
st.session_state.output_video_path = None
st.session_state.detections_summary = None
# Cache the model loading to prevent repeated loads
@st.cache_resource
def load_model():
model = torch.hub.load('./yolov5', 'custom', path='./yolo/best.pt', source='local', force_reload=False)
return model
model = load_model()
# Retrieve model class names
model_class_names = model.names # Dictionary {index: class_name}
# Function to map class names to indices (case-insensitive)
def get_class_indices(class_list):
indices = []
not_found = []
for cls in class_list:
found = False
for index, name in model_class_names.items():
if name.lower() == cls.lower():
indices.append(index)
found = True
break
if not found:
not_found.append(cls)
return indices, not_found
# Function to annotate images
def annotate_image(frame, results):
results.render() # Updates results.ims with the annotated images
annotated_frame = results.ims[0] # Get the first (and only) image
return annotated_frame
# Inform the user about the available labels
st.markdown("### Available Classes:")
st.markdown("**" + ", ".join(default_sub_classes + ["rubbish"]) + "**")
# Inform the user about the default detection
st.info("By default, the application will detect **rubbish** only.")
# User input for classes, separated by commas (optional)
custom_classes_input = st.text_input(
"Enter classes (comma-separated) or type 'all' to detect everything:",
""
)
# Retrieve all model classes
all_model_classes = list(model_class_names.values())
# Determine classes to use based on user input
if custom_classes_input.strip() == "":
# No input provided; use only 'rubbish'
selected_classes = ['rubbish']
st.info("No classes entered. Using default class: **rubbish**.")
elif custom_classes_input.strip().lower() == "all":
# User chose to detect all classes
selected_classes = all_model_classes
st.info("Detecting **all** available classes.")
else:
# User provided specific classes
# Split the input string into a list of classes and remove any extra whitespace
input_classes = [cls.strip() for cls in custom_classes_input.split(",") if cls.strip()]
# Ensure 'rubbish' is included
if 'rubbish' not in [cls.lower() for cls in input_classes]:
selected_classes = input_classes + ['rubbish']
st.info(f"Detecting the following classes: **{', '.join(selected_classes)}** (Including **rubbish**)")
else:
selected_classes = input_classes
st.info(f"Detecting the following classes: **{', '.join(selected_classes)}**")
# Map selected class names to their indices
selected_class_indices, not_found_classes = get_class_indices(selected_classes)
if not_found_classes:
st.warning(f"The following classes were not found in the model and will be ignored: **{', '.join(not_found_classes)}**")
# Proceed only if there are valid classes to detect
if selected_class_indices:
# Set the classes for the model
model.classes = selected_class_indices
# --------------------- Image Upload and Processing ---------------------
st.header("Image Object Detection")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"], key="image_upload")
if uploaded_file is not None:
try:
# Convert the file to a PIL image
image = Image.open(uploaded_file).convert('RGB')
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write("Processing...")
# Perform inference
results = model(image)
# Extract DataFrame from results
results_df = results.pandas().xyxy[0]
# Filter results to include only selected classes
filtered_results = results_df[results_df['name'].str.lower().isin([cls.lower() for cls in selected_classes])]
if filtered_results.empty:
st.warning("No objects detected for the selected classes.")
else:
# Display filtered results
st.write("### Detection Results")
st.dataframe(filtered_results)
# Annotate the image
annotated_image = annotate_image(np.array(image), results)
# Convert annotated image back to PIL format
annotated_pil = Image.fromarray(annotated_image)
# Display annotated image
st.image(annotated_pil, caption="Annotated Image", use_column_width=True)
# Convert annotated image to bytes
img_byte_arr = io.BytesIO()
annotated_pil.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
# Add download button
st.download_button(
label="Download Annotated Image",
data=img_byte_arr,
file_name='annotated_image.png',
mime='image/png'
)
except Exception as e:
st.error(f"An error occurred during image processing: {e}")
# --------------------- Video Upload and Processing ---------------------
st.header("Video Object Detection")
uploaded_video = st.file_uploader("Choose a video...", type=["mp4", "avi", "mov"], key="video_upload")
if uploaded_video is not None:
# Check if the uploaded video is different from the previously processed one
# Check if the uploaded video first time
if st.session_state.get("uploaded_video_name") is None:
st.session_state.uploaded_video_name = uploaded_video.name
print("First time uploaded video" +st.session_state.uploaded_video_name)
elif st.session_state.uploaded_video_name != uploaded_video.name:
st.session_state.uploaded_video_name = uploaded_video.name
print("Another time uploaded video" +st.session_state.uploaded_video_name)
st.session_state.video_processed = False
st.session_state.output_video_path = None
st.session_state.detections_summary = None
print("New uploaded video")
# Reset session state if video upload is removed
if uploaded_video is None and st.session_state.video_processed:
st.session_state.video_processed = False
st.session_state.output_video_path = None
st.session_state.detections_summary = None
st.warning("Video upload has been cleared. You can upload a new video for processing.")
if uploaded_video:
if not st.session_state.video_processed:
try:
with st.spinner("Processing video..."):
# Save uploaded video to a temporary file
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_video.read())
tfile.close()
# Open the video file
video_cap = cv2.VideoCapture(tfile.name)
stframe = st.empty() # Placeholder for displaying video frames
# Initialize VideoWriter for saving the output video
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = video_cap.get(cv2.CAP_PROP_FPS)
width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
frame_count = int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT))
progress_bar = st.progress(0)
# Initialize list to collect all detections
all_detections = []
for frame_num in range(frame_count):
ret, frame = video_cap.read() # Read a frame from the video
if not ret:
break
# Convert frame to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Perform inference
results = model(frame_rgb)
# Extract DataFrame from results
results_df = results.pandas().xyxy[0]
results_df['frame_num'] = frame_num # Optional: Add frame number for reference
# Append detections to the list
if not results_df.empty:
all_detections.append(results_df)
# Annotate the frame with detections
annotated_frame = annotate_image(frame_rgb, results)
# Convert annotated frame back to BGR for VideoWriter
annotated_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR)
# Write the annotated frame to the output video
out.write(annotated_bgr)
# Display the annotated frame in Streamlit
stframe.image(annotated_frame, channels="RGB", use_column_width=True)
# Update progress bar
progress_percent = (frame_num + 1) / frame_count
progress_bar.progress(progress_percent)
video_cap.release() # Release the video capture object
out.release() # Release the VideoWriter object
# Save processed video path and detections summary to session state
st.session_state.output_video_path = output_video_path
if all_detections:
# Concatenate all detections into a single DataFrame
detections_df = pd.concat(all_detections, ignore_index=True)
# Optional: Group by class name and count detections
detections_summary = detections_df.groupby('name').size().reset_index(name='counts')
st.session_state.detections_summary = detections_summary
else:
st.session_state.detections_summary = None
# Mark video as processed
st.session_state.video_processed = True
# st.session_state.uploaded_video_name = uploaded_video.name
st.success("Video processing complete!")
except Exception as e:
st.error(f"An error occurred during video processing: {e}")
# Display download button and detection summary if processed
if st.session_state.video_processed:
try:
# Create a download button for the annotated video
with open(st.session_state.output_video_path, "rb") as video_file:
st.download_button(
label="Download Annotated Video",
data=video_file,
file_name="annotated_video.mp4",
mime="video/mp4"
)
# Display detection table if there are detections
if st.session_state.detections_summary is not None:
detections_summary = st.session_state.detections_summary
st.write("### Detection Summary")
st.dataframe(detections_summary)
else:
st.warning("No objects detected in the video for the selected classes.")
except Exception as e:
st.error(f"An error occurred while preparing the download: {e}")
# Optionally, display all available classes when 'all' is selected
if custom_classes_input.strip().lower() == "all":
st.info(f"The model is set to detect **all** available classes: {', '.join(all_model_classes)}")