Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# import part
|
2 |
import streamlit as st
|
3 |
from transformers import pipeline
|
4 |
|
@@ -55,7 +55,7 @@ def text2story(text):
|
|
55 |
|
56 |
return story_text
|
57 |
|
58 |
-
# text2audio -
|
59 |
def text2audio(story_text):
|
60 |
try:
|
61 |
# Use the HelpingAI TTS model as requested
|
@@ -71,32 +71,17 @@ def text2audio(story_text):
|
|
71 |
story_text = story_text[:max_chars]
|
72 |
|
73 |
# Generate speech
|
74 |
-
st.write("Generating audio...")
|
75 |
speech = synthesizer(story_text)
|
|
|
|
|
76 |
st.write(f"Speech output keys: {list(speech.keys())}")
|
77 |
|
78 |
-
# We'll pass the audio data directly to Streamlit instead of saving to a file
|
79 |
-
# This works because Streamlit's st.audio() can take raw audio data
|
80 |
return speech
|
81 |
|
82 |
except Exception as e:
|
83 |
st.error(f"Error generating audio: {str(e)}")
|
84 |
-
import traceback
|
85 |
-
st.error(traceback.format_exc())
|
86 |
return None
|
87 |
|
88 |
-
# Function to save temporary image file
|
89 |
-
def save_uploaded_image(uploaded_file):
|
90 |
-
if not os.path.exists("temp"):
|
91 |
-
os.makedirs("temp")
|
92 |
-
|
93 |
-
image_path = os.path.join("temp", uploaded_file.name)
|
94 |
-
|
95 |
-
with open(image_path, "wb") as f:
|
96 |
-
f.write(uploaded_file.getvalue())
|
97 |
-
|
98 |
-
return image_path
|
99 |
-
|
100 |
# main part
|
101 |
st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜")
|
102 |
st.header("Turn Your Image to Audio Story")
|
@@ -106,12 +91,12 @@ if uploaded_file is not None:
|
|
106 |
# Display the uploaded image
|
107 |
st.image(uploaded_file, caption="Uploaded Image", use_container_width=True)
|
108 |
|
109 |
-
#
|
110 |
-
|
111 |
|
112 |
# Stage 1: Image to Text
|
113 |
st.text('Processing img2text...')
|
114 |
-
caption = img2text(
|
115 |
st.write(caption)
|
116 |
|
117 |
# Stage 2: Text to Story
|
@@ -135,14 +120,21 @@ if uploaded_file is not None:
|
|
135 |
elif 'waveform' in speech_output and 'sample_rate' in speech_output:
|
136 |
st.audio(speech_output['waveform'], sample_rate=speech_output['sample_rate'])
|
137 |
else:
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
except Exception as e:
|
140 |
st.error(f"Error playing audio: {str(e)}")
|
141 |
else:
|
142 |
-
st.error("Audio generation failed. Please try again.")
|
143 |
-
|
144 |
-
# Clean up the temporary files
|
145 |
-
try:
|
146 |
-
os.remove(image_path)
|
147 |
-
except:
|
148 |
-
pass
|
|
|
1 |
+
# import part - only using the two requested imports
|
2 |
import streamlit as st
|
3 |
from transformers import pipeline
|
4 |
|
|
|
55 |
|
56 |
return story_text
|
57 |
|
58 |
+
# text2audio - Using HelpingAI-TTS-v1 model
|
59 |
def text2audio(story_text):
|
60 |
try:
|
61 |
# Use the HelpingAI TTS model as requested
|
|
|
71 |
story_text = story_text[:max_chars]
|
72 |
|
73 |
# Generate speech
|
|
|
74 |
speech = synthesizer(story_text)
|
75 |
+
|
76 |
+
# Get output information
|
77 |
st.write(f"Speech output keys: {list(speech.keys())}")
|
78 |
|
|
|
|
|
79 |
return speech
|
80 |
|
81 |
except Exception as e:
|
82 |
st.error(f"Error generating audio: {str(e)}")
|
|
|
|
|
83 |
return None
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
# main part
|
86 |
st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜")
|
87 |
st.header("Turn Your Image to Audio Story")
|
|
|
91 |
# Display the uploaded image
|
92 |
st.image(uploaded_file, caption="Uploaded Image", use_container_width=True)
|
93 |
|
94 |
+
# Create a temporary file in memory from the uploaded file
|
95 |
+
image_bytes = uploaded_file.getvalue()
|
96 |
|
97 |
# Stage 1: Image to Text
|
98 |
st.text('Processing img2text...')
|
99 |
+
caption = img2text(image_bytes) # Pass bytes directly to pipeline
|
100 |
st.write(caption)
|
101 |
|
102 |
# Stage 2: Text to Story
|
|
|
120 |
elif 'waveform' in speech_output and 'sample_rate' in speech_output:
|
121 |
st.audio(speech_output['waveform'], sample_rate=speech_output['sample_rate'])
|
122 |
else:
|
123 |
+
# Try the first array-like value as audio data
|
124 |
+
for key, value in speech_output.items():
|
125 |
+
if hasattr(value, '__len__') and len(value) > 1000:
|
126 |
+
if 'rate' in speech_output:
|
127 |
+
st.audio(value, sample_rate=speech_output['rate'])
|
128 |
+
elif 'sample_rate' in speech_output:
|
129 |
+
st.audio(value, sample_rate=speech_output['sample_rate'])
|
130 |
+
elif 'sampling_rate' in speech_output:
|
131 |
+
st.audio(value, sample_rate=speech_output['sampling_rate'])
|
132 |
+
else:
|
133 |
+
st.audio(value, sample_rate=24000) # Default sample rate
|
134 |
+
break
|
135 |
+
else:
|
136 |
+
st.error(f"Could not find compatible audio format in: {list(speech_output.keys())}")
|
137 |
except Exception as e:
|
138 |
st.error(f"Error playing audio: {str(e)}")
|
139 |
else:
|
140 |
+
st.error("Audio generation failed. Please try again.")
|
|
|
|
|
|
|
|
|
|
|
|