CR7CAD commited on
Commit
5f21a2d
·
verified ·
1 Parent(s): 83842b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +86 -11
app.py CHANGED
@@ -12,10 +12,47 @@ def img2text(image_path):
12
  return text
13
 
14
  # text2story
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  def text2audio(story_text):
16
  try:
17
- # Use the HelpingAI TTS model as requested
18
- synthesizer = pipeline("text-to-speech", model="HelpingAI/HelpingAI-TTS-v1")
 
 
 
 
 
 
19
 
20
  # Limit text length to avoid timeouts
21
  max_chars = 500
@@ -26,19 +63,57 @@ def text2audio(story_text):
26
  else:
27
  story_text = story_text[:max_chars]
28
 
29
- # Generate speech
30
- st.write("Generating audio...")
31
- speech = synthesizer(story_text)
32
- st.write(f"Speech output keys: {list(speech.keys())}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
- # We'll pass the audio data directly to Streamlit instead of saving to a file
35
- # This works because Streamlit's st.audio() can take raw audio data
36
- return speech
37
 
38
  except Exception as e:
39
  st.error(f"Error generating audio: {str(e)}")
40
- import traceback
41
- st.error(traceback.format_exc())
42
  return None
43
 
44
  # Function to save temporary image file
 
12
  return text
13
 
14
  # text2story
15
+ def text2story(text):
16
+ # Using a smaller text generation model
17
+ generator = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
18
+
19
+ # Create a prompt for the story generation
20
+ prompt = f"Write a fun children's story based on this: {text}. Once upon a time, "
21
+
22
+ # Generate the story
23
+ story_result = generator(
24
+ prompt,
25
+ max_length=150,
26
+ num_return_sequences=1,
27
+ temperature=0.7,
28
+ top_k=50,
29
+ top_p=0.95,
30
+ do_sample=True
31
+ )
32
+
33
+ # Extract the generated text
34
+ story_text = story_result[0]['generated_text']
35
+ story_text = story_text.replace(prompt, "Once upon a time, ")
36
+
37
+ # Make sure the story is at least 100 words
38
+ words = story_text.split()
39
+ if len(words) > 100:
40
+ # Simply truncate to 100 words
41
+ story_text = " ".join(words[:100])
42
+
43
+ return story_text
44
+
45
+ # text2audio - REVISED to correctly handle the audio output
46
  def text2audio(story_text):
47
  try:
48
+ # Use a different TTS model that works reliably with pipeline
49
+ synthesizer = pipeline("text-to-speech", model="microsoft/speecht5_tts")
50
+
51
+ # Additional input required for this model
52
+ speaker_embeddings = pipeline(
53
+ "audio-classification",
54
+ model="microsoft/speecht5_speaker_embeddings"
55
+ )("some_audio_file.mp3")["logits"]
56
 
57
  # Limit text length to avoid timeouts
58
  max_chars = 500
 
63
  else:
64
  story_text = story_text[:max_chars]
65
 
66
+ # Generate speech with correct parameters
67
+ speech = synthesizer(
68
+ text=story_text,
69
+ forward_params={"speaker_embeddings": speaker_embeddings}
70
+ )
71
+
72
+ # Create a temporary WAV file
73
+ temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
74
+ temp_filename = temp_file.name
75
+ temp_file.close()
76
+
77
+ # Display the structure of the speech output for debugging
78
+ st.write(f"Speech output keys: {speech.keys()}")
79
+
80
+ # Save the audio data to the temporary file
81
+ # Different models have different output formats, we'll try common keys
82
+ if 'audio' in speech:
83
+ # Convert numpy array to WAV file
84
+ try:
85
+ import scipy.io.wavfile as wavfile
86
+ wavfile.write(temp_filename, speech['sampling_rate'], speech['audio'])
87
+ except ImportError:
88
+ # If scipy is not available, try raw writing
89
+ with open(temp_filename, 'wb') as f:
90
+ # Convert numpy array to bytes in a simple way
91
+ if isinstance(speech['audio'], np.ndarray):
92
+ audio_bytes = speech['audio'].tobytes()
93
+ f.write(audio_bytes)
94
+ else:
95
+ f.write(speech['audio'])
96
+ elif 'numpy_array' in speech:
97
+ with open(temp_filename, 'wb') as f:
98
+ f.write(speech['numpy_array'].tobytes())
99
+ else:
100
+ # Fallback: try to write whatever is available
101
+ with open(temp_filename, 'wb') as f:
102
+ # Just write the first value that seems like it could be audio data
103
+ for key, value in speech.items():
104
+ if isinstance(value, (bytes, bytearray)) or (
105
+ isinstance(value, np.ndarray) and value.size > 1000):
106
+ if isinstance(value, np.ndarray):
107
+ f.write(value.tobytes())
108
+ else:
109
+ f.write(value)
110
+ break
111
 
112
+ return temp_filename
 
 
113
 
114
  except Exception as e:
115
  st.error(f"Error generating audio: {str(e)}")
116
+ # Print all available keys for debugging
 
117
  return None
118
 
119
  # Function to save temporary image file