Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,14 +9,15 @@ def img2text(image):
|
|
9 |
text = image_to_text(image)[0]["generated_text"]
|
10 |
return text
|
11 |
|
12 |
-
#
|
13 |
def text2story(text):
|
14 |
generator = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
15 |
-
prompt = f"Write a short children's story based on this: {text}. Once upon a time, "
|
16 |
|
|
|
17 |
story_result = generator(
|
18 |
prompt,
|
19 |
-
max_length=
|
20 |
num_return_sequences=1,
|
21 |
temperature=0.7,
|
22 |
do_sample=True
|
@@ -24,12 +25,60 @@ def text2story(text):
|
|
24 |
|
25 |
story_text = story_result[0]['generated_text']
|
26 |
story_text = story_text.replace(prompt, "Once upon a time, ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
return story_text
|
28 |
|
29 |
-
#
|
30 |
def text2audio(story_text):
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
return speech
|
34 |
|
35 |
# Basic Streamlit interface
|
@@ -44,26 +93,31 @@ if uploaded_file is not None:
|
|
44 |
image = Image.open(uploaded_file)
|
45 |
|
46 |
# Image to Text
|
47 |
-
st.
|
48 |
-
|
49 |
st.write(f"Caption: {caption}")
|
50 |
|
51 |
# Text to Story
|
52 |
-
st.
|
53 |
-
|
54 |
st.write(f"Story: {story}")
|
55 |
|
56 |
# Text to Audio
|
57 |
-
st.
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
9 |
text = image_to_text(image)[0]["generated_text"]
|
10 |
return text
|
11 |
|
12 |
+
# Improved text-to-story function with natural ending
|
13 |
def text2story(text):
|
14 |
generator = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
15 |
+
prompt = f"Write a short children's story based on this: {text}. The story should have a clear beginning, middle, and end. Keep it under 150 words. Once upon a time, "
|
16 |
|
17 |
+
# Generate a longer text to ensure we get a complete story
|
18 |
story_result = generator(
|
19 |
prompt,
|
20 |
+
max_length=300,
|
21 |
num_return_sequences=1,
|
22 |
temperature=0.7,
|
23 |
do_sample=True
|
|
|
25 |
|
26 |
story_text = story_result[0]['generated_text']
|
27 |
story_text = story_text.replace(prompt, "Once upon a time, ")
|
28 |
+
|
29 |
+
# Find natural ending points (end of sentences)
|
30 |
+
periods = [i for i, char in enumerate(story_text) if char == '.']
|
31 |
+
question_marks = [i for i, char in enumerate(story_text) if char == '?']
|
32 |
+
exclamation_marks = [i for i, char in enumerate(story_text) if char == '!']
|
33 |
+
|
34 |
+
# Combine all ending punctuation and sort
|
35 |
+
all_endings = sorted(periods + question_marks + exclamation_marks)
|
36 |
+
|
37 |
+
# If we have any sentence endings
|
38 |
+
if all_endings:
|
39 |
+
# Get the index where the story should reasonably end (after at least 100 characters)
|
40 |
+
min_story_length = 100
|
41 |
+
suitable_endings = [i for i in all_endings if i >= min_story_length]
|
42 |
+
|
43 |
+
if suitable_endings:
|
44 |
+
# Find an ending that completes a thought (not just the first sentence)
|
45 |
+
if len(suitable_endings) > 2:
|
46 |
+
# Use the third sentence ending or later for a more complete story
|
47 |
+
return story_text[:suitable_endings[2]+1]
|
48 |
+
else:
|
49 |
+
# If we don't have many sentences, use the last one we found
|
50 |
+
return story_text[:suitable_endings[-1]+1]
|
51 |
+
|
52 |
+
# If no good ending is found, return as is
|
53 |
return story_text
|
54 |
|
55 |
+
# Updated text-to-audio function with a compatible model
|
56 |
def text2audio(story_text):
|
57 |
+
# Use Microsoft's SpeechT5 model which is widely supported
|
58 |
+
synthesizer = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
59 |
+
|
60 |
+
# This model requires speaker embeddings
|
61 |
+
from transformers import SpeechT5HifiGan
|
62 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
63 |
+
|
64 |
+
# Get speaker embeddings for a female voice
|
65 |
+
from transformers import SpeechT5Processor
|
66 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
67 |
+
speaker_embeddings = processor.speaker_embeddings["female"]
|
68 |
+
|
69 |
+
# Limit text length to avoid issues
|
70 |
+
max_chars = 500
|
71 |
+
if len(story_text) > max_chars:
|
72 |
+
last_period = story_text[:max_chars].rfind('.')
|
73 |
+
if last_period > 0:
|
74 |
+
story_text = story_text[:last_period + 1]
|
75 |
+
else:
|
76 |
+
story_text = story_text[:max_chars]
|
77 |
+
|
78 |
+
# Generate speech with appropriate parameters
|
79 |
+
inputs = processor(text=story_text, return_tensors="pt")
|
80 |
+
speech = synthesizer(inputs["input_ids"][0], speaker_embeddings=speaker_embeddings, vocoder=vocoder)
|
81 |
+
|
82 |
return speech
|
83 |
|
84 |
# Basic Streamlit interface
|
|
|
93 |
image = Image.open(uploaded_file)
|
94 |
|
95 |
# Image to Text
|
96 |
+
with st.spinner("Generating caption..."):
|
97 |
+
caption = img2text(image)
|
98 |
st.write(f"Caption: {caption}")
|
99 |
|
100 |
# Text to Story
|
101 |
+
with st.spinner("Creating story..."):
|
102 |
+
story = text2story(caption)
|
103 |
st.write(f"Story: {story}")
|
104 |
|
105 |
# Text to Audio
|
106 |
+
with st.spinner("Generating audio..."):
|
107 |
+
try:
|
108 |
+
speech_output = text2audio(story)
|
109 |
+
|
110 |
+
# Play audio
|
111 |
+
if hasattr(speech_output, 'numpy') or hasattr(speech_output, 'audio'):
|
112 |
+
if hasattr(speech_output, 'numpy'):
|
113 |
+
audio_data = speech_output.numpy()
|
114 |
+
else:
|
115 |
+
audio_data = speech_output.audio
|
116 |
+
|
117 |
+
sample_rate = speech_output.sampling_rate if hasattr(speech_output, 'sampling_rate') else 16000
|
118 |
+
st.audio(audio_data, sample_rate=sample_rate)
|
119 |
+
else:
|
120 |
+
st.audio(speech_output['audio'], sample_rate=speech_output.get('sampling_rate', 16000))
|
121 |
+
except Exception as e:
|
122 |
+
st.error(f"Error generating or playing audio: {e}")
|
123 |
+
st.write("Try installing the latest transformers library with: pip install --upgrade transformers")
|