Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,134 +1,95 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
-
import io
|
5 |
-
from gtts import gTTS
|
6 |
-
import time
|
7 |
import os
|
8 |
-
import traceback
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
# Title and introduction
|
14 |
-
st.title("Image to Audio Story Generator")
|
15 |
-
st.write("Upload a picture and let's create a magical story!")
|
16 |
-
|
17 |
-
# Initialize models with better error handling
|
18 |
-
@st.cache_resource
|
19 |
-
def load_models():
|
20 |
try:
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
except Exception as e:
|
25 |
-
|
26 |
-
|
27 |
-
# Load models with status indicator
|
28 |
-
with st.spinner("Loading models..."):
|
29 |
-
image_to_text, story_generator, error = load_models()
|
30 |
-
if error:
|
31 |
-
st.error(f"Failed to load models: {error}")
|
32 |
-
else:
|
33 |
-
st.success("Models loaded successfully!")
|
34 |
|
35 |
-
#
|
36 |
-
def
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
return caption, None
|
42 |
-
return "An interesting image", "No caption generated"
|
43 |
-
except Exception as e:
|
44 |
-
return "An interesting image", str(e)
|
45 |
|
46 |
-
#
|
47 |
-
def
|
48 |
try:
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
st.write(f"Prompt: {prompt}")
|
53 |
-
|
54 |
-
# Generate with increased timeout and temperature
|
55 |
-
result = story_generator(
|
56 |
-
prompt,
|
57 |
-
max_length=100,
|
58 |
-
do_sample=True,
|
59 |
-
temperature=0.9,
|
60 |
-
top_p=0.95
|
61 |
-
)
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
story = result[0]['generated_text']
|
68 |
-
|
69 |
-
# Ensure story doesn't exceed 100 words
|
70 |
-
words = story.split()
|
71 |
-
if len(words) > 100:
|
72 |
-
words = words[:100]
|
73 |
-
story = " ".join(words)
|
74 |
-
# Add period to the end if needed
|
75 |
-
if not story.endswith(('.', '!', '?')):
|
76 |
-
story += '.'
|
77 |
-
|
78 |
-
return story, None
|
79 |
-
return "Story generation failed.", "No story generated"
|
80 |
except Exception as e:
|
81 |
-
st.error(f"Error
|
82 |
-
|
83 |
-
return "Once upon a time... (Story generation failed)", str(e)
|
84 |
|
85 |
-
#
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
tts.save(audio_file)
|
91 |
-
return audio_file, None
|
92 |
-
except Exception as e:
|
93 |
-
return None, str(e)
|
94 |
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
if uploaded_file is not None and image_to_text is not None and story_generator is not None:
|
99 |
# Display the uploaded image
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
audio_file, audio_error = text_to_speech(story)
|
123 |
-
if audio_error:
|
124 |
-
st.warning(f"Audio generation issue: {audio_error}")
|
125 |
-
else:
|
126 |
-
# Display audio
|
127 |
-
st.write("### Listen to your story")
|
128 |
-
st.audio(audio_file)
|
129 |
-
except Exception as e:
|
130 |
-
st.error(f"Error processing image: {str(e)}")
|
131 |
-
st.error(traceback.format_exc())
|
132 |
|
133 |
-
|
134 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
|
|
|
|
|
|
4 |
import os
|
|
|
5 |
|
6 |
+
# function part
|
7 |
+
# img2text
|
8 |
+
def img2text(image_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
try:
|
10 |
+
# Load the image-to-text model
|
11 |
+
image_to_text_model = pipeline("image-to-text", model="naver-clova-ix/donut-base")
|
12 |
+
# Open the image file
|
13 |
+
image = Image.open(image_path)
|
14 |
+
# Extract text from the image
|
15 |
+
result = image_to_text_model(image)
|
16 |
+
# Get the generated text
|
17 |
+
text = result[0]["generated_text"] if result else "No text detected"
|
18 |
+
return text
|
19 |
except Exception as e:
|
20 |
+
st.error(f"Error processing image: {str(e)}")
|
21 |
+
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# text2story
|
24 |
+
def text2story(text):
|
25 |
+
# For now, just return the extracted text as the story
|
26 |
+
# This function can be expanded later with more sophisticated story generation
|
27 |
+
story_text = f"Here's a story based on the text: {text}"
|
28 |
+
return story_text
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
# text2audio
|
31 |
+
def text2audio(story_text):
|
32 |
try:
|
33 |
+
# Load the text-to-speech model (using a common TTS pipeline)
|
34 |
+
# Note: You may need to install additional dependencies depending on the model used
|
35 |
+
tts_model = pipeline("text-to-speech", model="espnet/kan-bayashi_ljspeech_vits")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Generate audio from the story text
|
38 |
+
audio_data = tts_model(story_text)
|
39 |
|
40 |
+
return audio_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
except Exception as e:
|
42 |
+
st.error(f"Error generating audio: {str(e)}")
|
43 |
+
return None
|
|
|
44 |
|
45 |
+
# main part
|
46 |
+
st.set_page_config(page_title="Your Image to Audio Story",
|
47 |
+
page_icon="🦜")
|
48 |
+
st.header("Turn Your Image to Audio Story")
|
49 |
+
st.subheader("Using Donut model for text extraction")
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
uploaded_file = st.file_uploader("Select an Image...", type=['png', 'jpg', 'jpeg', 'gif', 'bmp', 'webp'])
|
52 |
+
|
53 |
+
if uploaded_file is not None:
|
54 |
+
# Save the uploaded file temporarily
|
55 |
+
bytes_data = uploaded_file.getvalue()
|
56 |
+
with open(uploaded_file.name, "wb") as file:
|
57 |
+
file.write(bytes_data)
|
58 |
|
|
|
59 |
# Display the uploaded image
|
60 |
+
st.image(uploaded_file, caption="Uploaded Image",
|
61 |
+
use_column_width=True)
|
62 |
+
|
63 |
+
# Stage 1: Image to Text
|
64 |
+
with st.spinner('Processing img2text...'):
|
65 |
+
extracted_text = img2text(uploaded_file.name)
|
66 |
+
st.subheader("Extracted Text:")
|
67 |
+
st.write(extracted_text)
|
68 |
+
|
69 |
+
# Stage 2: Text to Story
|
70 |
+
with st.spinner('Generating a story...'):
|
71 |
+
story = text2story(extracted_text)
|
72 |
+
st.subheader("Generated Story:")
|
73 |
+
st.write(story)
|
74 |
+
|
75 |
+
# Stage 3: Story to Audio data
|
76 |
+
with st.spinner('Generating audio data...'):
|
77 |
+
audio_data = text2audio(story)
|
78 |
+
|
79 |
+
# Remove the temporary file
|
80 |
+
if os.path.exists(uploaded_file.name):
|
81 |
+
os.remove(uploaded_file.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
# Play button
|
84 |
+
if st.button("Play Audio"):
|
85 |
+
if audio_data:
|
86 |
+
st.audio(audio_data['audio'],
|
87 |
+
format="audio/wav",
|
88 |
+
start_time=0,
|
89 |
+
sample_rate=audio_data['sampling_rate'])
|
90 |
+
else:
|
91 |
+
st.warning("Audio generation failed. Playing a placeholder audio.")
|
92 |
+
try:
|
93 |
+
st.audio("kids_playing_audio.wav")
|
94 |
+
except FileNotFoundError:
|
95 |
+
st.error("Placeholder audio file not found. Audio playback is unavailable.")
|