Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,115 +1,119 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from PIL import Image
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
try:
|
11 |
-
|
12 |
-
|
13 |
-
# Use the Salesforce model instead of Donut to avoid sentencepiece issues
|
14 |
-
st.info("Using Salesforce/blip-image-captioning-base model for image-to-text")
|
15 |
-
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
16 |
-
|
17 |
-
# Open the image file
|
18 |
-
image = Image.open(image_path)
|
19 |
-
|
20 |
-
# Extract text from the image
|
21 |
-
result = image_to_text_model(image)
|
22 |
-
|
23 |
-
# Get the generated text
|
24 |
-
text = result[0]["generated_text"] if result else "No text detected"
|
25 |
-
return text
|
26 |
except Exception as e:
|
27 |
-
st.error(f"Error
|
28 |
-
return
|
29 |
-
|
30 |
-
# text2story
|
31 |
-
def text2story(text):
|
32 |
-
# For now, just return the extracted text as the story
|
33 |
-
story_text = f"Here's a story based on the text: {text}"
|
34 |
-
return story_text
|
35 |
|
36 |
-
#
|
37 |
-
def
|
38 |
try:
|
39 |
-
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
#
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
except Exception as e:
|
54 |
st.error(f"Error generating audio: {str(e)}")
|
55 |
return None
|
56 |
|
57 |
-
#
|
58 |
-
st.
|
59 |
-
page_icon="🦜")
|
60 |
-
st.header("Turn Your Image to Audio Story")
|
61 |
-
st.subheader("Image to Text to Audio Conversion")
|
62 |
-
|
63 |
-
uploaded_file = st.file_uploader("Select an Image...", type=['png', 'jpg', 'jpeg', 'gif', 'bmp', 'webp'])
|
64 |
|
65 |
if uploaded_file is not None:
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
if os.path.exists(image_temp_path):
|
95 |
-
os.remove(image_temp_path)
|
96 |
-
|
97 |
-
# Play button
|
98 |
-
if st.button("Play Audio"):
|
99 |
-
if audio_file_path and os.path.exists(audio_file_path):
|
100 |
-
# Play the generated audio
|
101 |
-
with open(audio_file_path, "rb") as audio_file:
|
102 |
-
audio_bytes = audio_file.read()
|
103 |
-
st.audio(audio_bytes, format="audio/mp3")
|
104 |
|
105 |
-
#
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
+
import io
|
5 |
+
from gtts import gTTS
|
6 |
+
import time
|
7 |
|
8 |
+
# Set page title
|
9 |
+
st.set_page_config(page_title="Kids Story Generator")
|
10 |
+
|
11 |
+
# Title and introduction
|
12 |
+
st.title("Kids Story Generator")
|
13 |
+
st.write("Upload a picture and let's create a magical story!")
|
14 |
+
|
15 |
+
# Initialize models
|
16 |
+
@st.cache_resource
|
17 |
+
def load_models():
|
18 |
+
image_to_text = pipeline("image-to-text", model="microsoft/git-base-coco")
|
19 |
+
story_generator = pipeline("text-generation", model="gpt2")
|
20 |
+
return image_to_text, story_generator
|
21 |
+
|
22 |
+
image_to_text, story_generator = load_models()
|
23 |
+
|
24 |
+
# Function to generate caption from image
|
25 |
+
def generate_caption(image):
|
26 |
try:
|
27 |
+
caption = image_to_text(image)[0]['generated_text']
|
28 |
+
return caption
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
except Exception as e:
|
30 |
+
st.error(f"Error generating caption: {str(e)}")
|
31 |
+
return "children playing in a colorful park"
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# Function to generate story from caption (less than 100 words)
|
34 |
+
def generate_story(caption):
|
35 |
try:
|
36 |
+
prompt = f"Once upon a time, {caption} "
|
37 |
|
38 |
+
# Set parameters for faster generation while keeping quality
|
39 |
+
story = story_generator(
|
40 |
+
prompt,
|
41 |
+
max_length=100,
|
42 |
+
do_sample=True,
|
43 |
+
temperature=0.7, # Lower temperature for faster generation
|
44 |
+
top_p=0.9,
|
45 |
+
num_return_sequences=1
|
46 |
+
)[0]['generated_text']
|
47 |
|
48 |
+
# Ensure story doesn't exceed 100 words
|
49 |
+
words = story.split()
|
50 |
+
if len(words) > 100:
|
51 |
+
words = words[:100]
|
52 |
+
story = " ".join(words)
|
53 |
+
# Add period to the end if needed
|
54 |
+
if not story.endswith(('.', '!', '?')):
|
55 |
+
story += '.'
|
56 |
|
57 |
+
return story
|
58 |
+
except Exception as e:
|
59 |
+
st.error(f"Error generating story: {str(e)}")
|
60 |
+
return f"Once upon a time, {caption}. Something magical happened and everyone lived happily ever after."
|
61 |
+
|
62 |
+
# Function to convert text to speech
|
63 |
+
def text_to_speech(text):
|
64 |
+
try:
|
65 |
+
tts = gTTS(text=text, lang='en', slow=False)
|
66 |
+
audio_file = "story_audio.mp3"
|
67 |
+
tts.save(audio_file)
|
68 |
+
return audio_file
|
69 |
except Exception as e:
|
70 |
st.error(f"Error generating audio: {str(e)}")
|
71 |
return None
|
72 |
|
73 |
+
# File uploader
|
74 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
if uploaded_file is not None:
|
77 |
+
try:
|
78 |
+
# Display the uploaded image
|
79 |
+
image = Image.open(uploaded_file)
|
80 |
+
st.image(image, caption='Uploaded Image', use_container_width=True)
|
81 |
+
|
82 |
+
# Generate button
|
83 |
+
if st.button("Generate Story"):
|
84 |
+
# Use progress bar for better UX
|
85 |
+
progress_bar = st.progress(0)
|
86 |
+
|
87 |
+
# Generate caption
|
88 |
+
progress_bar.progress(25)
|
89 |
+
st.text('Analyzing image...')
|
90 |
+
caption = generate_caption(image)
|
91 |
+
st.write("Image caption:", caption)
|
92 |
+
|
93 |
+
# Generate story
|
94 |
+
progress_bar.progress(50)
|
95 |
+
st.text('Creating story...')
|
96 |
+
story = generate_story(caption)
|
97 |
+
word_count = len(story.split())
|
98 |
+
st.write(f"### Your Story ({word_count} words)")
|
99 |
+
st.write(story)
|
100 |
+
|
101 |
+
# Generate audio
|
102 |
+
progress_bar.progress(75)
|
103 |
+
st.text('Generating audio...')
|
104 |
+
audio_file = text_to_speech(story)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
# Display audio
|
107 |
+
if audio_file:
|
108 |
+
progress_bar.progress(100)
|
109 |
+
st.write("### Listen to your story")
|
110 |
+
st.audio(audio_file)
|
111 |
+
|
112 |
+
# Clear progress when done
|
113 |
+
progress_bar.empty()
|
114 |
+
|
115 |
+
except Exception as e:
|
116 |
+
st.error(f"An error occurred: {str(e)}")
|
117 |
+
|
118 |
+
st.markdown("---")
|
119 |
+
st.write("Created for ISOM5240 Assignment")
|