Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,31 @@
|
|
1 |
-
# import part
|
2 |
import streamlit as st
|
3 |
from transformers import pipeline
|
4 |
from PIL import Image
|
5 |
-
import io
|
6 |
|
7 |
# function part
|
8 |
-
# img2text
|
9 |
def img2text(image):
|
10 |
-
|
11 |
-
|
|
|
12 |
return text
|
13 |
|
14 |
-
# text2story -
|
15 |
def text2story(text):
|
16 |
-
#
|
17 |
-
generator = pipeline("text-generation", model="
|
18 |
|
19 |
-
# Create a prompt for
|
20 |
-
prompt = f"
|
21 |
|
22 |
-
# Generate
|
23 |
story_result = generator(
|
24 |
prompt,
|
25 |
-
|
26 |
num_return_sequences=1,
|
27 |
temperature=0.7,
|
28 |
top_k=50,
|
29 |
-
top_p=0.95,
|
30 |
do_sample=True
|
31 |
)
|
32 |
|
@@ -34,33 +33,25 @@ def text2story(text):
|
|
34 |
story_text = story_result[0]['generated_text']
|
35 |
story_text = story_text.replace(prompt, "Once upon a time, ")
|
36 |
|
37 |
-
# Find a natural ending point (end of sentence)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
# Find the last sentence ending punctuation
|
49 |
-
last_end = max(last_period, last_question, last_exclamation)
|
50 |
-
|
51 |
-
if last_end > 0:
|
52 |
-
# Truncate at the end of the last complete sentence
|
53 |
-
story_text = shortened_text[:last_end + 1]
|
54 |
-
else:
|
55 |
-
# If no sentence ending found, just use the shortened text
|
56 |
-
story_text = shortened_text
|
57 |
|
58 |
return story_text
|
59 |
|
60 |
# text2audio - Using HelpingAI-TTS-v1 model
|
61 |
def text2audio(story_text):
|
62 |
try:
|
63 |
-
|
|
|
64 |
|
65 |
# Limit text length to avoid timeouts
|
66 |
max_chars = 500
|
@@ -74,9 +65,6 @@ def text2audio(story_text):
|
|
74 |
# Generate speech
|
75 |
speech = synthesizer(story_text)
|
76 |
|
77 |
-
# Get output information
|
78 |
-
st.write(f"Speech output keys: {list(speech.keys())}")
|
79 |
-
|
80 |
return speech
|
81 |
|
82 |
except Exception as e:
|
@@ -95,19 +83,25 @@ if uploaded_file is not None:
|
|
95 |
# Convert the file to a PIL Image
|
96 |
image = Image.open(uploaded_file)
|
97 |
|
|
|
|
|
|
|
98 |
# Stage 1: Image to Text
|
99 |
-
st.
|
100 |
-
|
101 |
-
|
|
|
102 |
|
103 |
# Stage 2: Text to Story
|
104 |
-
st.
|
105 |
-
|
106 |
-
|
|
|
107 |
|
108 |
# Stage 3: Story to Audio data
|
109 |
-
st.
|
110 |
-
|
|
|
111 |
|
112 |
# Play button
|
113 |
if st.button("Play Audio"):
|
|
|
1 |
+
# import part
|
2 |
import streamlit as st
|
3 |
from transformers import pipeline
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
# function part
|
7 |
+
# img2text - Using a lighter model
|
8 |
def img2text(image):
|
9 |
+
# Use a smaller, faster image captioning model
|
10 |
+
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
11 |
+
text = image_to_text(image, max_new_tokens=20)[0]["generated_text"]
|
12 |
return text
|
13 |
|
14 |
+
# text2story - Using a much faster model with constraints
|
15 |
def text2story(text):
|
16 |
+
# Use a tiny model that's much faster
|
17 |
+
generator = pipeline("text-generation", model="distilgpt2")
|
18 |
|
19 |
+
# Create a more constrained prompt for faster generation
|
20 |
+
prompt = f"A short children's story about {text}: Once upon a time, "
|
21 |
|
22 |
+
# Generate with strict constraints for speed
|
23 |
story_result = generator(
|
24 |
prompt,
|
25 |
+
max_new_tokens=100, # Limit token generation
|
26 |
num_return_sequences=1,
|
27 |
temperature=0.7,
|
28 |
top_k=50,
|
|
|
29 |
do_sample=True
|
30 |
)
|
31 |
|
|
|
33 |
story_text = story_result[0]['generated_text']
|
34 |
story_text = story_text.replace(prompt, "Once upon a time, ")
|
35 |
|
36 |
+
# Find a natural ending point (end of sentence)
|
37 |
+
last_period = story_text.rfind('.')
|
38 |
+
last_question = story_text.rfind('?')
|
39 |
+
last_exclamation = story_text.rfind('!')
|
40 |
+
|
41 |
+
# Find the last sentence ending punctuation
|
42 |
+
last_end = max(last_period, last_question, last_exclamation)
|
43 |
+
|
44 |
+
if last_end > 0:
|
45 |
+
# Truncate at the end of the last complete sentence
|
46 |
+
story_text = story_text[:last_end + 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
return story_text
|
49 |
|
50 |
# text2audio - Using HelpingAI-TTS-v1 model
|
51 |
def text2audio(story_text):
|
52 |
try:
|
53 |
+
# Use the HelpingAI TTS model as requested
|
54 |
+
synthesizer = pipeline("text-to-speech", model="HelpingAI/HelpingAI-TTS-v1")
|
55 |
|
56 |
# Limit text length to avoid timeouts
|
57 |
max_chars = 500
|
|
|
65 |
# Generate speech
|
66 |
speech = synthesizer(story_text)
|
67 |
|
|
|
|
|
|
|
68 |
return speech
|
69 |
|
70 |
except Exception as e:
|
|
|
83 |
# Convert the file to a PIL Image
|
84 |
image = Image.open(uploaded_file)
|
85 |
|
86 |
+
# Progress indicator
|
87 |
+
progress_bar = st.progress(0)
|
88 |
+
|
89 |
# Stage 1: Image to Text
|
90 |
+
with st.spinner('Processing image caption...'):
|
91 |
+
caption = img2text(image)
|
92 |
+
progress_bar.progress(33)
|
93 |
+
st.write(f"**Image caption:** {caption}")
|
94 |
|
95 |
# Stage 2: Text to Story
|
96 |
+
with st.spinner('Creating story...'):
|
97 |
+
story = text2story(caption)
|
98 |
+
progress_bar.progress(66)
|
99 |
+
st.write(f"**Story:** {story}")
|
100 |
|
101 |
# Stage 3: Story to Audio data
|
102 |
+
with st.spinner('Generating audio...'):
|
103 |
+
speech_output = text2audio(story)
|
104 |
+
progress_bar.progress(100)
|
105 |
|
106 |
# Play button
|
107 |
if st.button("Play Audio"):
|