File size: 23,340 Bytes
5b94bbe
fc55093
5b94bbe
fc55093
 
986332a
e472708
986332a
 
 
 
8e57a3e
 
 
d2d6501
5b94bbe
e472708
5b94bbe
ca31f44
fc55093
5b94bbe
fc55093
5b94bbe
5d07781
5b94bbe
fc55093
8e57a3e
 
5b94bbe
8e57a3e
 
d21b321
 
8e57a3e
 
e472708
8e57a3e
e472708
986332a
e472708
986332a
 
e472708
 
986332a
8e57a3e
e472708
fc55093
d3c5eab
8e57a3e
5b94bbe
e472708
8e57a3e
5b94bbe
8e57a3e
 
e472708
5b94bbe
8e57a3e
e472708
5b94bbe
8e57a3e
 
 
 
5b94bbe
e472708
5b94bbe
8e57a3e
5b94bbe
986332a
5b94bbe
 
 
 
 
 
 
 
 
 
 
 
 
fc55093
 
5b94bbe
fc55093
5b94bbe
fc55093
5b94bbe
e472708
fc55093
fa79427
fc55093
5b94bbe
fa79427
e472708
fc55093
fa79427
fc55093
 
5b94bbe
 
 
fa79427
e472708
fc55093
 
5b94bbe
fc55093
e472708
fa79427
e472708
fa79427
5b94bbe
e472708
5b94bbe
 
e472708
5b94bbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e472708
 
 
5b94bbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e472708
 
 
5b94bbe
e472708
5b94bbe
 
 
e472708
 
5b94bbe
e472708
 
5b94bbe
fc55093
99e5c00
5b94bbe
 
 
 
 
 
 
99e5c00
 
 
5b94bbe
99e5c00
 
5b94bbe
 
99e5c00
 
 
5b94bbe
99e5c00
 
 
5b94bbe
 
99e5c00
 
 
5b94bbe
 
99e5c00
 
5b94bbe
 
 
 
 
 
 
 
 
99e5c00
5b94bbe
99e5c00
5b94bbe
99e5c00
fc55093
e472708
fc55093
986332a
5b94bbe
fc55093
5b94bbe
88107c2
99e5c00
 
 
 
88107c2
5b94bbe
17a94ec
 
5b94bbe
17a94ec
 
5b94bbe
 
 
 
 
 
 
 
fc55093
8e57a3e
5b94bbe
88107c2
5b94bbe
 
 
 
 
 
 
 
 
 
 
88107c2
fc55093
5b94bbe
d3c5eab
fc55093
 
5b94bbe
 
 
 
 
 
fc55093
d3c5eab
5b94bbe
fc55093
5b94bbe
 
 
fc55093
5b94bbe
fc55093
5b94bbe
fc55093
5b94bbe
 
fc55093
e472708
19a0df1
5b94bbe
 
19a0df1
5b94bbe
 
848089c
e472708
848089c
fc55093
88107c2
5b94bbe
848089c
3e9d890
e472708
5b94bbe
8057156
5b94bbe
e472708
 
 
 
d3c5eab
5b94bbe
e472708
 
5b94bbe
 
 
 
 
 
 
 
 
7733908
5b94bbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2290eb
5b94bbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e472708
 
5b94bbe
 
e472708
5b94bbe
 
e472708
5b94bbe
 
e472708
5b94bbe
 
 
 
 
c2290eb
5b94bbe
 
c2290eb
 
 
5b94bbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e472708
 
5b94bbe
e472708
5b94bbe
e472708
5b94bbe
e472708
5b94bbe
ee0c7bb
e472708
5b94bbe
e472708
5b94bbe
 
986332a
fc55093
0cda46e
fc55093
0cda46e
5b94bbe
 
 
 
0cda46e
5b94bbe
d3c5eab
5b94bbe
e472708
5b94bbe
0cda46e
fc55093
e472708
5b94bbe
 
 
fc55093
0cda46e
5b94bbe
0cda46e
5b94bbe
fc55093
0cda46e
 
 
 
5b94bbe
 
 
0cda46e
 
 
5b94bbe
 
 
 
 
fc55093
e472708
0cda46e
e472708
5b94bbe
 
0cda46e
5b94bbe
0cda46e
e472708
0cda46e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b94bbe
 
 
 
b58a2f9
 
546267f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import os, io, re, time, tempfile
import streamlit as st
import docx, docx2txt
import pandas as pd
from functools import lru_cache

# Handle imports
try:
    from transformers import pipeline
    has_pipeline = True
except ImportError:
    from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM
    import torch
    has_pipeline = False

# Setup page
st.set_page_config(page_title="Resume-Job Fit Analyzer", initial_sidebar_state="collapsed")
st.markdown("""<style>[data-testid="collapsedControl"],[data-testid="stSidebar"] {display: none;}</style>""", unsafe_allow_html=True)

#####################################
# Model Loading & Text Processing
#####################################
@st.cache_resource
def load_models():
    with st.spinner("Loading AI models..."):
        models = {}
        # Load summarization model
        if has_pipeline:
            models['summarizer'] = pipeline("summarization", model="Falconsai/text_summarization", max_length=100)
        else:
            try:
                models['summarizer_model'] = AutoModelForSeq2SeqLM.from_pretrained("Falconsai/text_summarization")
                models['summarizer_tokenizer'] = AutoTokenizer.from_pretrained("Falconsai/text_summarization")
            except Exception as e:
                st.error(f"Error loading summarization model: {e}")
                models['summarizer_model'] = models['summarizer_tokenizer'] = None
        
        # Load evaluation model
        if has_pipeline:
            models['evaluator'] = pipeline("sentiment-analysis", model="CR7CAD/RobertaFinetuned")
        else:
            try:
                models['evaluator_model'] = AutoModelForSequenceClassification.from_pretrained("CR7CAD/RobertaFinetuned")
                models['evaluator_tokenizer'] = AutoTokenizer.from_pretrained("CR7CAD/RobertaFinetuned")
            except Exception as e:
                st.error(f"Error loading sentiment model: {e}")
                models['evaluator_model'] = models['evaluator_tokenizer'] = None
        return models

def summarize_text(text, models, max_length=100):
    """Summarize text with fallbacks"""
    input_text = text[:1024]
    
    # Try pipeline
    if has_pipeline and 'summarizer' in models:
        try:
            return models['summarizer'](input_text)[0]['summary_text']
        except: pass
    
    # Try manual model
    if 'summarizer_model' in models and models['summarizer_model']:
        try:
            tokenizer = models['summarizer_tokenizer']
            model = models['summarizer_model']
            inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024)
            summary_ids = model.generate(inputs.input_ids, max_length=max_length, min_length=30, num_beams=4)
            return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
        except: pass
    
    # Fallback - extract sentences
    sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
    scored = [(1.0/(i+1), s) for i, s in enumerate(sentences) if len(s.split()) >= 4]
    scored.sort(reverse=True)
    
    result, length = [], 0
    for _, sentence in scored:
        if length + len(sentence.split()) <= max_length:
            result.append(sentence)
            length += len(sentence.split())
    
    if result:
        ordered = sorted([(sentences.index(s), s) for s in result])
        return " ".join(s for _, s in ordered)
    return ""

#####################################
# File Processing & Information Extraction
#####################################
@st.cache_data
def extract_text_from_file(file_obj):
    ext = os.path.splitext(file_obj.name)[1].lower()
    
    if ext == ".docx":
        try:
            document = docx.Document(file_obj)
            return "\n".join(para.text for para in document.paragraphs if para.text.strip())[:15000]
        except Exception as e:
            return f"Error processing DOCX file: {e}"
    elif ext == ".doc":
        try:
            with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
                temp_file.write(file_obj.getvalue())
                text = docx2txt.process(temp_file.name)
                os.unlink(temp_file.name)
                return text[:15000]
        except Exception as e:
            return f"Error processing DOC file: {e}"
    elif ext == ".txt":
        try:
            return file_obj.getvalue().decode("utf-8")[:15000]
        except Exception as e:
            return f"Error processing TXT file: {e}"
    else:
        return "Unsupported file type. Please upload a .docx, .doc, or .txt file."

# Information extraction functions
def extract_skills(text):
    """Extract skills from text - expanded for better matching"""
    # Expanded skill keywords dictionary
    skill_keywords = {
        "Programming": ["Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "React", "Angular", "Vue", 
                      "PHP", "Ruby", "Swift", "Kotlin", "Go", "TypeScript", "Node.js", "jQuery", "Bootstrap"],
        "Data Science": ["Machine Learning", "Data Analysis", "Statistics", "TensorFlow", "PyTorch", "AI", "NLP",
                        "Data Mining", "Big Data", "Data Visualization", "Statistical Analysis", "R", "SPSS", "SAS",
                        "Regression", "Classification", "Clustering", "Neural Networks", "Deep Learning"],
        "Database": ["SQL", "MySQL", "MongoDB", "PostgreSQL", "Oracle", "Redis", "DynamoDB", "SQLite", "NoSQL", 
                    "Database Design", "SQL Server", "Database Administration", "ETL", "Data Warehousing"],
        "Web Dev": ["React", "Angular", "Node.js", "Frontend", "Backend", "Full-Stack", "REST API", "GraphQL",
                  "Web Development", "WordPress", "Drupal", "CMS", "SEO", "UI/UX", "Responsive Design", "AJAX"],
        "Software Dev": ["Agile", "Scrum", "Git", "DevOps", "Docker", "CI/CD", "Jenkins", "Software Development",
                       "Object-Oriented Programming", "Design Patterns", "Testing", "QA", "Software Architecture",
                       "Version Control", "JIRA", "Microservices", "Code Review", "Debugging"],
        "Cloud": ["AWS", "Azure", "Google Cloud", "Lambda", "S3", "EC2", "Cloud Computing", "Serverless", 
                "Infrastructure as Code", "Cloud Architecture", "Cloud Security", "Kubernetes", "Load Balancing"],
        "Business": ["Project Management", "Leadership", "Teamwork", "Agile", "Scrum", "Business Analysis",
                    "Requirements Gathering", "Client Relations", "Communication", "Presentation", "Meeting Facilitation",
                    "Strategic Planning", "Process Improvement", "Problem Solving", "Decision Making", "Stakeholder Management"]
    }
    
    text_lower = text.lower()
    
    # Method 1: Look for exact matches
    exact_skills = [skill for _, skills in skill_keywords.items() for skill in skills if skill.lower() in text_lower]
    
    # Method 2: Use regex for more flexible matching (accounts for variations)
    more_skills = []
    for category, skills in skill_keywords.items():
        for skill in skills:
            # This handles cases like "Python developer" or "experienced in Python"
            if re.search(r'\b' + re.escape(skill.lower()) + r'(?:\s|\b|ing|er|ed)', text_lower):
                more_skills.append(skill)
    
    # Combine both methods and remove duplicates
    all_skills = list(set(exact_skills + more_skills))
    
    # Add soft skill detection
    soft_skills = ["Communication", "Teamwork", "Problem Solving", "Critical Thinking", 
                  "Leadership", "Organization", "Time Management", "Flexibility", "Adaptability"]
    
    for skill in soft_skills:
        if skill.lower() in text_lower or re.search(r'\b' + re.escape(skill.lower()) + r'(?:\s|$)', text_lower):
            all_skills.append(skill)
    
    return all_skills

@lru_cache(maxsize=32)
def extract_name(text_start):
    lines = [line.strip() for line in text_start.split('\n')[:5] if line.strip()]
    
    if lines:
        first_line = lines[0]
        if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae"]):
            return first_line
    
    for line in lines[:3]:
        if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
            return line
    return "Unknown"

def extract_age(text):
    for pattern in [r'age:?\s*(\d{1,2})', r'(\d{1,2})\s*years\s*old', r'dob:.*(\d{4})', r'date of birth:.*(\d{4})']:
        match = re.search(pattern, text.lower())
        if match:
            if len(match.group(1)) == 4:  # Birth year
                try: return str(2025 - int(match.group(1)))
                except: pass
            return match.group(1)
    return "Not specified"

def extract_industry(text):
    industries = {
        "Technology": ["software", "programming", "developer", "IT", "tech", "computer", "digital"],
        "Finance": ["banking", "financial", "accounting", "finance", "analyst"],
        "Healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor"],
        "Education": ["teaching", "teacher", "professor", "education", "university", "school"],
        "Marketing": ["marketing", "advertising", "digital marketing", "social media", "brand"],
        "Engineering": ["engineer", "engineering", "mechanical", "civil", "electrical"],
        "Data Science": ["data science", "machine learning", "AI", "analytics", "big data"],
        "Management": ["manager", "management", "leadership", "executive", "director"]
    }
    
    text_lower = text.lower()
    counts = {ind: sum(text_lower.count(kw) for kw in kws) for ind, kws in industries.items()}
    return max(counts.items(), key=lambda x: x[1])[0] if any(counts.values()) else "Not specified"

def extract_job_position(text):
    text_lower = text.lower()
    for pattern in [r'objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', r'career\s*objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', 
                   r'summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', r'seeking.*position.*as\s*([^.]*)']:
        match = re.search(pattern, text_lower, re.IGNORECASE | re.DOTALL)
        if match:
            text = match.group(1).strip()
            for title in ["developer", "engineer", "analyst", "manager", "specialist", "designer"]:
                if title in text:
                    return next((m.group(1).strip().title() for m in 
                               [re.search(r'(\w+\s+' + title + r')', text)] if m), title.title())
            return " ".join(text.split()[:10]).title() + "..." if len(text.split()) > 10 else text.title()
    
    # Check for job title near experience
    for pattern in [r'experience:.*?(\w+\s+\w+(?:\s+\w+)?)(?=\s*at|\s*\()', r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*(?:current|present)']:
        match = re.search(pattern, text_lower, re.IGNORECASE)
        if match: return match.group(1).strip().title()
    
    return "Not specified"

#####################################
# Core Analysis Functions
#####################################
def summarize_resume_text(resume_text, models):
    start = time.time()
    
    # Basic info extraction
    name = extract_name(resume_text[:500])
    age = extract_age(resume_text)
    industry = extract_industry(resume_text)
    job_position = extract_job_position(resume_text)
    skills = extract_skills(resume_text)
    
    # Generate summary
    try:
        if has_pipeline and 'summarizer' in models:
            model_summary = models['summarizer'](resume_text[:2000], max_length=100, min_length=30)[0]['summary_text']
        else:
            model_summary = summarize_text(resume_text, models, max_length=100)
    except:
        model_summary = "Error generating summary."
    
    # Format result
    summary = f"Name: {name}\n\nAge: {age}\n\nExpected Industry: {industry}\n\n"
    summary += f"Expected Job Position: {job_position}\n\nSkills: {', '.join(skills)}\n\nSummary: {model_summary}"
    
    return summary, time.time() - start

def extract_job_requirements(job_description, models):
    # Expanded technical skills list for better matching
    tech_skills = [
        "Python", "Java", "JavaScript", "SQL", "HTML", "CSS", "React", "Angular", "Vue", "Node.js",
        "Machine Learning", "Data Science", "AI", "Deep Learning", "NLP", "Statistics", "TensorFlow", 
        "AWS", "Azure", "Google Cloud", "Docker", "Kubernetes", "CI/CD", "DevOps",
        "MySQL", "MongoDB", "PostgreSQL", "Oracle", "NoSQL", "Database", "Data Analysis",
        "Project Management", "Agile", "Scrum", "Leadership", "Communication", "Teamwork",
        "Git", "Software Development", "Full Stack", "Frontend", "Backend", "RESTful API",
        "Mobile Development", "Android", "iOS", "Swift", "Kotlin", "React Native", "Flutter",
        "Business Analysis", "Requirements", "UX/UI", "Design", "Product Management",
        "Testing", "QA", "Security", "Cloud Computing", "Networking", "System Administration",
        "Linux", "Windows", "Excel", "PowerPoint", "Word", "Microsoft Office",
        "Problem Solving", "Critical Thinking", "Analytical Skills"
    ]
    
    clean_text = job_description.lower()
    
    # Extract job title
    job_title = "Not specified"
    for pattern in [r'^([^:.\n]+?)(position|role|job)', r'^([^:.\n]+?)\n', r'hiring.*? ([^:.\n]+?)(:-|[.:]|\n|$)']:
        match = re.search(pattern, clean_text, re.IGNORECASE)
        if match:
            title = match.group(1).strip() if len(match.groups()) >= 1 else match.group(2).strip()
            if 3 <= len(title) <= 50:
                job_title = title.capitalize()
                break
    
    # Extract years required
    years_required = 0
    for pattern in [r'(\d+)(?:\+)?\s*(?:years|yrs).*?experience', r'experience.*?(\d+)(?:\+)?\s*(?:years|yrs)']:
        match = re.search(pattern, clean_text, re.IGNORECASE)
        if match:
            try:
                years_required = int(match.group(1))
                break
            except: pass
    
    # Extract skills
    required_skills = [skill for skill in tech_skills if re.search(r'\b' + re.escape(skill.lower()) + r'\b', clean_text)]
    
    # Fallback if no skills found
    if not required_skills:
        words = [w for w in re.findall(r'\b\w{4,}\b', clean_text) 
                if w not in ["with", "that", "this", "have", "from", "they", "will", "what", "your"]]
        word_counts = {}
        for w in words: word_counts[w] = word_counts.get(w, 0) + 1
        required_skills = [w.capitalize() for w, _ in sorted(word_counts.items(), key=lambda x: x[1], reverse=True)[:5]]
    
    return {
        "title": job_title,
        "years_experience": years_required,
        "required_skills": required_skills,
        "summary": summarize_text(job_description, models, max_length=100)
    }

def evaluate_job_fit(resume_summary, job_requirements, models):
    start = time.time()
    
    # Basic extraction
    required_skills = job_requirements["required_skills"]
    years_required = job_requirements["years_experience"]
    job_title = job_requirements["title"]
    skills_mentioned = extract_skills(resume_summary)
    
    # Calculate matches - IMPROVED MATCHING ALGORITHM
    matching_skills = [skill for skill in required_skills if skill in skills_mentioned]
    
    # More balanced skill match calculation:
    # - If no required skills, default to 0.5 (neutral)
    # - Otherwise calculate percentage but with diminishing returns
    if not required_skills:
        skill_match = 0.5
    else:
        raw_match = len(matching_skills) / len(required_skills)
        # Apply a more gradual scaling to avoid big jumps
        skill_match = raw_match ** 0.7  # Using power < 1 gives more weight to partial matches
    
    # Extract experience
    years_experience = 0
    exp_match = re.search(r'(\d+)\+?\s*years?\s*(?:of)?\s*experience', resume_summary, re.IGNORECASE)
    if exp_match:
        try: years_experience = int(exp_match.group(1))
        except: pass
    
    # Calculate scores with smoother transitions
    # Experience matching: more balanced, handles the case where job requires no experience
    if years_required == 0:
        # If no experience required, having 1+ years is good, 0 is neutral
        exp_match_ratio = min(1.0, years_experience / 2 + 0.5)
    else:
        # For jobs requiring experience, use a more gradual scale
        exp_match_ratio = min(1.0, (years_experience / max(1, years_required)) ** 0.8)
    
    # Title matching - improved to find partial matches
    title_words = [w for w in job_title.lower().split() if len(w) > 3]
    if not title_words:
        title_match = 0.5  # Neutral if no meaningful title words
    else:
        matches = 0
        for word in title_words:
            if word in resume_summary.lower():
                matches += 1
            # Look for similar words (prefixes) for partial matching
            elif any(w.startswith(word[:4]) for w in resume_summary.lower().split() if len(w) > 3):
                matches += 0.5
        title_match = matches / len(title_words)
    
    # Calculate final scores with more reasonable ranges
    skill_score = skill_match * 2.0  # 0-2 scale
    exp_score = exp_match_ratio * 2.0  # 0-2 scale
    title_score = title_match * 2.0  # 0-2 scale
    
    # Extract candidate info
    name = re.search(r'Name:\s*(.*?)(?=\n|\Z)', resume_summary)
    name = name.group(1).strip() if name else "The candidate"
    
    industry = re.search(r'Expected Industry:\s*(.*?)(?=\n|\Z)', resume_summary)
    industry = industry.group(1).strip() if industry else "unspecified industry"
    
    # Calculate weighted score - ADJUSTED WEIGHTS
    weighted_score = (skill_score * 0.45) + (exp_score * 0.35) + (title_score * 0.20)
    
    # IMPROVED THRESHOLDS to get more "Potential Fit" results
    # Good Fit: 1.25+ (was 1.5)
    # Potential Fit: 0.6-1.25 (was 0.8-1.5)
    # No Fit: <0.6 (was <0.8)
    if weighted_score >= 1.25:
        fit_score = 2  # Good fit
    elif weighted_score >= 0.6:
        fit_score = 1  # Potential fit - wider range
    else:
        fit_score = 0  # Not a fit
    
    # Add logging to help debug the scoring
    st.session_state['debug_scores'] = {
        'skill_match': skill_match,
        'skill_score': skill_score,
        'exp_match_ratio': exp_match_ratio,
        'exp_score': exp_score,
        'title_match': title_match,
        'title_score': title_score,
        'weighted_score': weighted_score,
        'fit_score': fit_score,
        'matching_skills': matching_skills,
        'required_skills': required_skills
    }
    
    # Generate assessment
    missing = [skill for skill in required_skills if skill not in skills_mentioned]
    
    if fit_score == 2:
        assessment = f"{fit_score}: GOOD FIT - {name} demonstrates strong alignment with the {job_title} position. Their background in {industry} appears well-suited for this role's requirements."
    elif fit_score == 1:
        assessment = f"{fit_score}: POTENTIAL FIT - {name} shows potential for the {job_title} role but has gaps in certain areas. Additional training might be needed in {', '.join(missing[:2])}."
    else:
        assessment = f"{fit_score}: NO FIT - {name}'s background shows limited alignment with this {job_title} position. Their experience and skills differ significantly from the requirements."
    
    return assessment, fit_score, time.time() - start

def analyze_job_fit(resume_summary, job_description, models):
    start = time.time()
    job_requirements = extract_job_requirements(job_description, models)
    assessment, fit_score, _ = evaluate_job_fit(resume_summary, job_requirements, models)
    return assessment, fit_score, time.time() - start

#####################################
# Main Function
#####################################
def main():
    # Initialize session state for debug info
    if 'debug_scores' not in st.session_state:
        st.session_state['debug_scores'] = {}
        
    st.title("Resume-Job Fit Analyzer")
    st.markdown("Upload your resume file in **.docx**, **.doc**, or **.txt** format and enter a job description to see how well you match.")

    # Load models and get inputs
    models = load_models()
    uploaded_file = st.file_uploader("Upload your resume", type=["docx", "doc", "txt"])
    job_description = st.text_area("Enter Job Description", height=200, placeholder="Paste the job description here...")

    # Process when button clicked
    if uploaded_file and job_description and st.button("Analyze Job Fit"):
        progress = st.progress(0)
        status = st.empty()
        
        # Step 1: Extract text
        status.text("Step 1/3: Extracting text from resume...")
        resume_text = extract_text_from_file(uploaded_file)
        progress.progress(25)
        
        if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
            st.error(resume_text)
        else:
            # Step 2: Generate summary
            status.text("Step 2/3: Analyzing resume...")
            summary, summary_time = summarize_resume_text(resume_text, models)
            progress.progress(50)
            st.subheader("Your Resume Summary")
            st.markdown(summary)
            
            # Step 3: Evaluate fit
            status.text("Step 3/3: Evaluating job fit...")
            assessment, fit_score, eval_time = analyze_job_fit(summary, job_description, models)
            progress.progress(100)
            status.empty()

            # Display results
            st.subheader("Job Fit Assessment")
            fit_labels = {0: "NOT FIT", 1: "POTENTIAL FIT", 2: "GOOD FIT"}
            colors = {0: "red", 1: "orange", 2: "green"}
            st.markdown(f"<h2 style='color: {colors[fit_score]};'>{fit_labels[fit_score]}</h2>", unsafe_allow_html=True)
            st.markdown(assessment)
            st.info(f"Analysis completed in {(summary_time + eval_time):.2f} seconds")
            
            # Recommendations
            st.subheader("Recommended Next Steps")
            if fit_score == 2:
                st.markdown("""
                - Apply for this position as you appear to be a good match
                - Prepare for interviews by focusing on your relevant experience
                - Highlight your matching skills in your cover letter
                """)
            elif fit_score == 1:
                st.markdown("""
                - Consider applying but address skill gaps in your cover letter
                - Emphasize transferable skills and relevant experience
                - Prepare to discuss how you can quickly develop missing skills
                """)
            else:
                st.markdown("""
                - Look for positions better aligned with your current skills
                - If interested in this field, focus on developing the required skills
                - Consider similar roles with fewer experience requirements
                """)
            
            # Show debug scores if needed (uncomment this to debug scoring)
            # st.subheader("Debug Information")
            # st.json(st.session_state['debug_scores'])

if __name__ == "__main__":
    main()