Spaces:
Sleeping
Sleeping
File size: 23,340 Bytes
5b94bbe fc55093 5b94bbe fc55093 986332a e472708 986332a 8e57a3e d2d6501 5b94bbe e472708 5b94bbe ca31f44 fc55093 5b94bbe fc55093 5b94bbe 5d07781 5b94bbe fc55093 8e57a3e 5b94bbe 8e57a3e d21b321 8e57a3e e472708 8e57a3e e472708 986332a e472708 986332a e472708 986332a 8e57a3e e472708 fc55093 d3c5eab 8e57a3e 5b94bbe e472708 8e57a3e 5b94bbe 8e57a3e e472708 5b94bbe 8e57a3e e472708 5b94bbe 8e57a3e 5b94bbe e472708 5b94bbe 8e57a3e 5b94bbe 986332a 5b94bbe fc55093 5b94bbe fc55093 5b94bbe fc55093 5b94bbe e472708 fc55093 fa79427 fc55093 5b94bbe fa79427 e472708 fc55093 fa79427 fc55093 5b94bbe fa79427 e472708 fc55093 5b94bbe fc55093 e472708 fa79427 e472708 fa79427 5b94bbe e472708 5b94bbe e472708 5b94bbe e472708 5b94bbe e472708 5b94bbe e472708 5b94bbe e472708 5b94bbe e472708 5b94bbe fc55093 99e5c00 5b94bbe 99e5c00 5b94bbe 99e5c00 5b94bbe 99e5c00 5b94bbe 99e5c00 5b94bbe 99e5c00 5b94bbe 99e5c00 5b94bbe 99e5c00 5b94bbe 99e5c00 5b94bbe 99e5c00 fc55093 e472708 fc55093 986332a 5b94bbe fc55093 5b94bbe 88107c2 99e5c00 88107c2 5b94bbe 17a94ec 5b94bbe 17a94ec 5b94bbe fc55093 8e57a3e 5b94bbe 88107c2 5b94bbe 88107c2 fc55093 5b94bbe d3c5eab fc55093 5b94bbe fc55093 d3c5eab 5b94bbe fc55093 5b94bbe fc55093 5b94bbe fc55093 5b94bbe fc55093 5b94bbe fc55093 e472708 19a0df1 5b94bbe 19a0df1 5b94bbe 848089c e472708 848089c fc55093 88107c2 5b94bbe 848089c 3e9d890 e472708 5b94bbe 8057156 5b94bbe e472708 d3c5eab 5b94bbe e472708 5b94bbe 7733908 5b94bbe c2290eb 5b94bbe e472708 5b94bbe e472708 5b94bbe e472708 5b94bbe e472708 5b94bbe c2290eb 5b94bbe c2290eb 5b94bbe e472708 5b94bbe e472708 5b94bbe e472708 5b94bbe e472708 5b94bbe ee0c7bb e472708 5b94bbe e472708 5b94bbe 986332a fc55093 0cda46e fc55093 0cda46e 5b94bbe 0cda46e 5b94bbe d3c5eab 5b94bbe e472708 5b94bbe 0cda46e fc55093 e472708 5b94bbe fc55093 0cda46e 5b94bbe 0cda46e 5b94bbe fc55093 0cda46e 5b94bbe 0cda46e 5b94bbe fc55093 e472708 0cda46e e472708 5b94bbe 0cda46e 5b94bbe 0cda46e e472708 0cda46e 5b94bbe b58a2f9 546267f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
import os, io, re, time, tempfile
import streamlit as st
import docx, docx2txt
import pandas as pd
from functools import lru_cache
# Handle imports
try:
from transformers import pipeline
has_pipeline = True
except ImportError:
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM
import torch
has_pipeline = False
# Setup page
st.set_page_config(page_title="Resume-Job Fit Analyzer", initial_sidebar_state="collapsed")
st.markdown("""<style>[data-testid="collapsedControl"],[data-testid="stSidebar"] {display: none;}</style>""", unsafe_allow_html=True)
#####################################
# Model Loading & Text Processing
#####################################
@st.cache_resource
def load_models():
with st.spinner("Loading AI models..."):
models = {}
# Load summarization model
if has_pipeline:
models['summarizer'] = pipeline("summarization", model="Falconsai/text_summarization", max_length=100)
else:
try:
models['summarizer_model'] = AutoModelForSeq2SeqLM.from_pretrained("Falconsai/text_summarization")
models['summarizer_tokenizer'] = AutoTokenizer.from_pretrained("Falconsai/text_summarization")
except Exception as e:
st.error(f"Error loading summarization model: {e}")
models['summarizer_model'] = models['summarizer_tokenizer'] = None
# Load evaluation model
if has_pipeline:
models['evaluator'] = pipeline("sentiment-analysis", model="CR7CAD/RobertaFinetuned")
else:
try:
models['evaluator_model'] = AutoModelForSequenceClassification.from_pretrained("CR7CAD/RobertaFinetuned")
models['evaluator_tokenizer'] = AutoTokenizer.from_pretrained("CR7CAD/RobertaFinetuned")
except Exception as e:
st.error(f"Error loading sentiment model: {e}")
models['evaluator_model'] = models['evaluator_tokenizer'] = None
return models
def summarize_text(text, models, max_length=100):
"""Summarize text with fallbacks"""
input_text = text[:1024]
# Try pipeline
if has_pipeline and 'summarizer' in models:
try:
return models['summarizer'](input_text)[0]['summary_text']
except: pass
# Try manual model
if 'summarizer_model' in models and models['summarizer_model']:
try:
tokenizer = models['summarizer_tokenizer']
model = models['summarizer_model']
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024)
summary_ids = model.generate(inputs.input_ids, max_length=max_length, min_length=30, num_beams=4)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
except: pass
# Fallback - extract sentences
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
scored = [(1.0/(i+1), s) for i, s in enumerate(sentences) if len(s.split()) >= 4]
scored.sort(reverse=True)
result, length = [], 0
for _, sentence in scored:
if length + len(sentence.split()) <= max_length:
result.append(sentence)
length += len(sentence.split())
if result:
ordered = sorted([(sentences.index(s), s) for s in result])
return " ".join(s for _, s in ordered)
return ""
#####################################
# File Processing & Information Extraction
#####################################
@st.cache_data
def extract_text_from_file(file_obj):
ext = os.path.splitext(file_obj.name)[1].lower()
if ext == ".docx":
try:
document = docx.Document(file_obj)
return "\n".join(para.text for para in document.paragraphs if para.text.strip())[:15000]
except Exception as e:
return f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
temp_file.write(file_obj.getvalue())
text = docx2txt.process(temp_file.name)
os.unlink(temp_file.name)
return text[:15000]
except Exception as e:
return f"Error processing DOC file: {e}"
elif ext == ".txt":
try:
return file_obj.getvalue().decode("utf-8")[:15000]
except Exception as e:
return f"Error processing TXT file: {e}"
else:
return "Unsupported file type. Please upload a .docx, .doc, or .txt file."
# Information extraction functions
def extract_skills(text):
"""Extract skills from text - expanded for better matching"""
# Expanded skill keywords dictionary
skill_keywords = {
"Programming": ["Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "React", "Angular", "Vue",
"PHP", "Ruby", "Swift", "Kotlin", "Go", "TypeScript", "Node.js", "jQuery", "Bootstrap"],
"Data Science": ["Machine Learning", "Data Analysis", "Statistics", "TensorFlow", "PyTorch", "AI", "NLP",
"Data Mining", "Big Data", "Data Visualization", "Statistical Analysis", "R", "SPSS", "SAS",
"Regression", "Classification", "Clustering", "Neural Networks", "Deep Learning"],
"Database": ["SQL", "MySQL", "MongoDB", "PostgreSQL", "Oracle", "Redis", "DynamoDB", "SQLite", "NoSQL",
"Database Design", "SQL Server", "Database Administration", "ETL", "Data Warehousing"],
"Web Dev": ["React", "Angular", "Node.js", "Frontend", "Backend", "Full-Stack", "REST API", "GraphQL",
"Web Development", "WordPress", "Drupal", "CMS", "SEO", "UI/UX", "Responsive Design", "AJAX"],
"Software Dev": ["Agile", "Scrum", "Git", "DevOps", "Docker", "CI/CD", "Jenkins", "Software Development",
"Object-Oriented Programming", "Design Patterns", "Testing", "QA", "Software Architecture",
"Version Control", "JIRA", "Microservices", "Code Review", "Debugging"],
"Cloud": ["AWS", "Azure", "Google Cloud", "Lambda", "S3", "EC2", "Cloud Computing", "Serverless",
"Infrastructure as Code", "Cloud Architecture", "Cloud Security", "Kubernetes", "Load Balancing"],
"Business": ["Project Management", "Leadership", "Teamwork", "Agile", "Scrum", "Business Analysis",
"Requirements Gathering", "Client Relations", "Communication", "Presentation", "Meeting Facilitation",
"Strategic Planning", "Process Improvement", "Problem Solving", "Decision Making", "Stakeholder Management"]
}
text_lower = text.lower()
# Method 1: Look for exact matches
exact_skills = [skill for _, skills in skill_keywords.items() for skill in skills if skill.lower() in text_lower]
# Method 2: Use regex for more flexible matching (accounts for variations)
more_skills = []
for category, skills in skill_keywords.items():
for skill in skills:
# This handles cases like "Python developer" or "experienced in Python"
if re.search(r'\b' + re.escape(skill.lower()) + r'(?:\s|\b|ing|er|ed)', text_lower):
more_skills.append(skill)
# Combine both methods and remove duplicates
all_skills = list(set(exact_skills + more_skills))
# Add soft skill detection
soft_skills = ["Communication", "Teamwork", "Problem Solving", "Critical Thinking",
"Leadership", "Organization", "Time Management", "Flexibility", "Adaptability"]
for skill in soft_skills:
if skill.lower() in text_lower or re.search(r'\b' + re.escape(skill.lower()) + r'(?:\s|$)', text_lower):
all_skills.append(skill)
return all_skills
@lru_cache(maxsize=32)
def extract_name(text_start):
lines = [line.strip() for line in text_start.split('\n')[:5] if line.strip()]
if lines:
first_line = lines[0]
if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae"]):
return first_line
for line in lines[:3]:
if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
return line
return "Unknown"
def extract_age(text):
for pattern in [r'age:?\s*(\d{1,2})', r'(\d{1,2})\s*years\s*old', r'dob:.*(\d{4})', r'date of birth:.*(\d{4})']:
match = re.search(pattern, text.lower())
if match:
if len(match.group(1)) == 4: # Birth year
try: return str(2025 - int(match.group(1)))
except: pass
return match.group(1)
return "Not specified"
def extract_industry(text):
industries = {
"Technology": ["software", "programming", "developer", "IT", "tech", "computer", "digital"],
"Finance": ["banking", "financial", "accounting", "finance", "analyst"],
"Healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor"],
"Education": ["teaching", "teacher", "professor", "education", "university", "school"],
"Marketing": ["marketing", "advertising", "digital marketing", "social media", "brand"],
"Engineering": ["engineer", "engineering", "mechanical", "civil", "electrical"],
"Data Science": ["data science", "machine learning", "AI", "analytics", "big data"],
"Management": ["manager", "management", "leadership", "executive", "director"]
}
text_lower = text.lower()
counts = {ind: sum(text_lower.count(kw) for kw in kws) for ind, kws in industries.items()}
return max(counts.items(), key=lambda x: x[1])[0] if any(counts.values()) else "Not specified"
def extract_job_position(text):
text_lower = text.lower()
for pattern in [r'objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', r'career\s*objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
r'summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', r'seeking.*position.*as\s*([^.]*)']:
match = re.search(pattern, text_lower, re.IGNORECASE | re.DOTALL)
if match:
text = match.group(1).strip()
for title in ["developer", "engineer", "analyst", "manager", "specialist", "designer"]:
if title in text:
return next((m.group(1).strip().title() for m in
[re.search(r'(\w+\s+' + title + r')', text)] if m), title.title())
return " ".join(text.split()[:10]).title() + "..." if len(text.split()) > 10 else text.title()
# Check for job title near experience
for pattern in [r'experience:.*?(\w+\s+\w+(?:\s+\w+)?)(?=\s*at|\s*\()', r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*(?:current|present)']:
match = re.search(pattern, text_lower, re.IGNORECASE)
if match: return match.group(1).strip().title()
return "Not specified"
#####################################
# Core Analysis Functions
#####################################
def summarize_resume_text(resume_text, models):
start = time.time()
# Basic info extraction
name = extract_name(resume_text[:500])
age = extract_age(resume_text)
industry = extract_industry(resume_text)
job_position = extract_job_position(resume_text)
skills = extract_skills(resume_text)
# Generate summary
try:
if has_pipeline and 'summarizer' in models:
model_summary = models['summarizer'](resume_text[:2000], max_length=100, min_length=30)[0]['summary_text']
else:
model_summary = summarize_text(resume_text, models, max_length=100)
except:
model_summary = "Error generating summary."
# Format result
summary = f"Name: {name}\n\nAge: {age}\n\nExpected Industry: {industry}\n\n"
summary += f"Expected Job Position: {job_position}\n\nSkills: {', '.join(skills)}\n\nSummary: {model_summary}"
return summary, time.time() - start
def extract_job_requirements(job_description, models):
# Expanded technical skills list for better matching
tech_skills = [
"Python", "Java", "JavaScript", "SQL", "HTML", "CSS", "React", "Angular", "Vue", "Node.js",
"Machine Learning", "Data Science", "AI", "Deep Learning", "NLP", "Statistics", "TensorFlow",
"AWS", "Azure", "Google Cloud", "Docker", "Kubernetes", "CI/CD", "DevOps",
"MySQL", "MongoDB", "PostgreSQL", "Oracle", "NoSQL", "Database", "Data Analysis",
"Project Management", "Agile", "Scrum", "Leadership", "Communication", "Teamwork",
"Git", "Software Development", "Full Stack", "Frontend", "Backend", "RESTful API",
"Mobile Development", "Android", "iOS", "Swift", "Kotlin", "React Native", "Flutter",
"Business Analysis", "Requirements", "UX/UI", "Design", "Product Management",
"Testing", "QA", "Security", "Cloud Computing", "Networking", "System Administration",
"Linux", "Windows", "Excel", "PowerPoint", "Word", "Microsoft Office",
"Problem Solving", "Critical Thinking", "Analytical Skills"
]
clean_text = job_description.lower()
# Extract job title
job_title = "Not specified"
for pattern in [r'^([^:.\n]+?)(position|role|job)', r'^([^:.\n]+?)\n', r'hiring.*? ([^:.\n]+?)(:-|[.:]|\n|$)']:
match = re.search(pattern, clean_text, re.IGNORECASE)
if match:
title = match.group(1).strip() if len(match.groups()) >= 1 else match.group(2).strip()
if 3 <= len(title) <= 50:
job_title = title.capitalize()
break
# Extract years required
years_required = 0
for pattern in [r'(\d+)(?:\+)?\s*(?:years|yrs).*?experience', r'experience.*?(\d+)(?:\+)?\s*(?:years|yrs)']:
match = re.search(pattern, clean_text, re.IGNORECASE)
if match:
try:
years_required = int(match.group(1))
break
except: pass
# Extract skills
required_skills = [skill for skill in tech_skills if re.search(r'\b' + re.escape(skill.lower()) + r'\b', clean_text)]
# Fallback if no skills found
if not required_skills:
words = [w for w in re.findall(r'\b\w{4,}\b', clean_text)
if w not in ["with", "that", "this", "have", "from", "they", "will", "what", "your"]]
word_counts = {}
for w in words: word_counts[w] = word_counts.get(w, 0) + 1
required_skills = [w.capitalize() for w, _ in sorted(word_counts.items(), key=lambda x: x[1], reverse=True)[:5]]
return {
"title": job_title,
"years_experience": years_required,
"required_skills": required_skills,
"summary": summarize_text(job_description, models, max_length=100)
}
def evaluate_job_fit(resume_summary, job_requirements, models):
start = time.time()
# Basic extraction
required_skills = job_requirements["required_skills"]
years_required = job_requirements["years_experience"]
job_title = job_requirements["title"]
skills_mentioned = extract_skills(resume_summary)
# Calculate matches - IMPROVED MATCHING ALGORITHM
matching_skills = [skill for skill in required_skills if skill in skills_mentioned]
# More balanced skill match calculation:
# - If no required skills, default to 0.5 (neutral)
# - Otherwise calculate percentage but with diminishing returns
if not required_skills:
skill_match = 0.5
else:
raw_match = len(matching_skills) / len(required_skills)
# Apply a more gradual scaling to avoid big jumps
skill_match = raw_match ** 0.7 # Using power < 1 gives more weight to partial matches
# Extract experience
years_experience = 0
exp_match = re.search(r'(\d+)\+?\s*years?\s*(?:of)?\s*experience', resume_summary, re.IGNORECASE)
if exp_match:
try: years_experience = int(exp_match.group(1))
except: pass
# Calculate scores with smoother transitions
# Experience matching: more balanced, handles the case where job requires no experience
if years_required == 0:
# If no experience required, having 1+ years is good, 0 is neutral
exp_match_ratio = min(1.0, years_experience / 2 + 0.5)
else:
# For jobs requiring experience, use a more gradual scale
exp_match_ratio = min(1.0, (years_experience / max(1, years_required)) ** 0.8)
# Title matching - improved to find partial matches
title_words = [w for w in job_title.lower().split() if len(w) > 3]
if not title_words:
title_match = 0.5 # Neutral if no meaningful title words
else:
matches = 0
for word in title_words:
if word in resume_summary.lower():
matches += 1
# Look for similar words (prefixes) for partial matching
elif any(w.startswith(word[:4]) for w in resume_summary.lower().split() if len(w) > 3):
matches += 0.5
title_match = matches / len(title_words)
# Calculate final scores with more reasonable ranges
skill_score = skill_match * 2.0 # 0-2 scale
exp_score = exp_match_ratio * 2.0 # 0-2 scale
title_score = title_match * 2.0 # 0-2 scale
# Extract candidate info
name = re.search(r'Name:\s*(.*?)(?=\n|\Z)', resume_summary)
name = name.group(1).strip() if name else "The candidate"
industry = re.search(r'Expected Industry:\s*(.*?)(?=\n|\Z)', resume_summary)
industry = industry.group(1).strip() if industry else "unspecified industry"
# Calculate weighted score - ADJUSTED WEIGHTS
weighted_score = (skill_score * 0.45) + (exp_score * 0.35) + (title_score * 0.20)
# IMPROVED THRESHOLDS to get more "Potential Fit" results
# Good Fit: 1.25+ (was 1.5)
# Potential Fit: 0.6-1.25 (was 0.8-1.5)
# No Fit: <0.6 (was <0.8)
if weighted_score >= 1.25:
fit_score = 2 # Good fit
elif weighted_score >= 0.6:
fit_score = 1 # Potential fit - wider range
else:
fit_score = 0 # Not a fit
# Add logging to help debug the scoring
st.session_state['debug_scores'] = {
'skill_match': skill_match,
'skill_score': skill_score,
'exp_match_ratio': exp_match_ratio,
'exp_score': exp_score,
'title_match': title_match,
'title_score': title_score,
'weighted_score': weighted_score,
'fit_score': fit_score,
'matching_skills': matching_skills,
'required_skills': required_skills
}
# Generate assessment
missing = [skill for skill in required_skills if skill not in skills_mentioned]
if fit_score == 2:
assessment = f"{fit_score}: GOOD FIT - {name} demonstrates strong alignment with the {job_title} position. Their background in {industry} appears well-suited for this role's requirements."
elif fit_score == 1:
assessment = f"{fit_score}: POTENTIAL FIT - {name} shows potential for the {job_title} role but has gaps in certain areas. Additional training might be needed in {', '.join(missing[:2])}."
else:
assessment = f"{fit_score}: NO FIT - {name}'s background shows limited alignment with this {job_title} position. Their experience and skills differ significantly from the requirements."
return assessment, fit_score, time.time() - start
def analyze_job_fit(resume_summary, job_description, models):
start = time.time()
job_requirements = extract_job_requirements(job_description, models)
assessment, fit_score, _ = evaluate_job_fit(resume_summary, job_requirements, models)
return assessment, fit_score, time.time() - start
#####################################
# Main Function
#####################################
def main():
# Initialize session state for debug info
if 'debug_scores' not in st.session_state:
st.session_state['debug_scores'] = {}
st.title("Resume-Job Fit Analyzer")
st.markdown("Upload your resume file in **.docx**, **.doc**, or **.txt** format and enter a job description to see how well you match.")
# Load models and get inputs
models = load_models()
uploaded_file = st.file_uploader("Upload your resume", type=["docx", "doc", "txt"])
job_description = st.text_area("Enter Job Description", height=200, placeholder="Paste the job description here...")
# Process when button clicked
if uploaded_file and job_description and st.button("Analyze Job Fit"):
progress = st.progress(0)
status = st.empty()
# Step 1: Extract text
status.text("Step 1/3: Extracting text from resume...")
resume_text = extract_text_from_file(uploaded_file)
progress.progress(25)
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
st.error(resume_text)
else:
# Step 2: Generate summary
status.text("Step 2/3: Analyzing resume...")
summary, summary_time = summarize_resume_text(resume_text, models)
progress.progress(50)
st.subheader("Your Resume Summary")
st.markdown(summary)
# Step 3: Evaluate fit
status.text("Step 3/3: Evaluating job fit...")
assessment, fit_score, eval_time = analyze_job_fit(summary, job_description, models)
progress.progress(100)
status.empty()
# Display results
st.subheader("Job Fit Assessment")
fit_labels = {0: "NOT FIT", 1: "POTENTIAL FIT", 2: "GOOD FIT"}
colors = {0: "red", 1: "orange", 2: "green"}
st.markdown(f"<h2 style='color: {colors[fit_score]};'>{fit_labels[fit_score]}</h2>", unsafe_allow_html=True)
st.markdown(assessment)
st.info(f"Analysis completed in {(summary_time + eval_time):.2f} seconds")
# Recommendations
st.subheader("Recommended Next Steps")
if fit_score == 2:
st.markdown("""
- Apply for this position as you appear to be a good match
- Prepare for interviews by focusing on your relevant experience
- Highlight your matching skills in your cover letter
""")
elif fit_score == 1:
st.markdown("""
- Consider applying but address skill gaps in your cover letter
- Emphasize transferable skills and relevant experience
- Prepare to discuss how you can quickly develop missing skills
""")
else:
st.markdown("""
- Look for positions better aligned with your current skills
- If interested in this field, focus on developing the required skills
- Consider similar roles with fewer experience requirements
""")
# Show debug scores if needed (uncomment this to debug scoring)
# st.subheader("Debug Information")
# st.json(st.session_state['debug_scores'])
if __name__ == "__main__":
main() |