Spaces:
Sleeping
Sleeping
File size: 29,438 Bytes
fa79427 fc55093 fa79427 fc55093 986332a 8e57a3e d2d6501 fc55093 d3c5eab 848089c fc55093 d3c5eab fc55093 ca31f44 fc55093 5d07781 fc55093 8e57a3e 5be9ab6 986332a 8e57a3e 986332a fc55093 d3c5eab 8e57a3e 986332a 8e57a3e 986332a 8e57a3e 986332a 8e57a3e 986332a 8e57a3e 986332a 8e57a3e 986332a 8e57a3e 986332a 8e57a3e 986332a 8e57a3e fc55093 fa79427 fc55093 fa79427 fc55093 fa79427 fc55093 fa79427 fc55093 fa79427 fc55093 fa79427 fc55093 fa79427 fc55093 848089c ce7c5e8 fc55093 848089c d3c5eab fc55093 d3c5eab fc55093 d3c5eab fc55093 d3c5eab fc55093 848089c fc55093 986332a fc55093 8e57a3e fc55093 88107c2 fc55093 88107c2 fc55093 88107c2 fc55093 8e57a3e fc55093 88107c2 fc55093 88107c2 fc55093 d3c5eab fc55093 d3c5eab fc55093 d3c5eab fc55093 848089c fc55093 848089c d3c5eab fc55093 848089c fc55093 88107c2 fc55093 8e57a3e 848089c fc55093 848089c fc55093 88107c2 848089c d3c5eab fc55093 3e9d890 fc55093 986332a fc55093 986332a 88107c2 fc55093 8057156 fc55093 8e57a3e d3c5eab 8e57a3e 7733908 8e57a3e ee0c7bb 986332a fc55093 848089c fc55093 88107c2 fc55093 d3c5eab fa79427 fc55093 d3c5eab fa79427 fc55093 848089c fc55093 986332a fc55093 8e57a3e 986332a fc55093 5be9ab6 986332a 5be9ab6 88107c2 5be9ab6 fc55093 88107c2 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 986332a 88107c2 fc55093 5be9ab6 fc55093 88107c2 fc55093 88107c2 fc55093 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
import os
import io
import streamlit as st
import docx
import docx2txt
import tempfile
import time
import re
import pandas as pd
from functools import lru_cache
# Try different import approaches
try:
from transformers import pipeline
has_pipeline = True
except ImportError:
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM
import torch
has_pipeline = False
st.warning("Using basic transformers functionality instead of pipeline API")
# Set page title and hide sidebar
st.set_page_config(
page_title="Resume-Job Fit Analyzer",
initial_sidebar_state="collapsed"
)
# Hide sidebar completely with custom CSS
st.markdown("""
<style>
[data-testid="collapsedControl"] {display: none;}
section[data-testid="stSidebar"] {display: none;}
</style>
""", unsafe_allow_html=True)
#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
"""Load models at startup"""
with st.spinner("Loading AI models... This may take a minute on first run."):
models = {}
# Load summarization model
if has_pipeline:
# Use pipeline if available
models['summarizer'] = pipeline(
"summarization",
model="facebook/bart-base",
max_length=100,
truncation=True
)
else:
# Fall back to basic model loading
try:
models['summarizer_model'] = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-base")
models['summarizer_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base")
except Exception as e:
st.error(f"Error loading summarization model: {e}")
models['summarizer_model'] = None
models['summarizer_tokenizer'] = None
# Load sentiment model for evaluation
if has_pipeline:
# Use pipeline if available
models['evaluator'] = pipeline(
"sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english"
)
else:
# Fall back to basic model loading
try:
models['evaluator_model'] = AutoModelForSequenceClassification.from_pretrained(
"distilbert/distilbert-base-uncased-finetuned-sst-2-english"
)
models['evaluator_tokenizer'] = AutoTokenizer.from_pretrained(
"distilbert/distilbert-base-uncased-finetuned-sst-2-english"
)
except Exception as e:
st.error(f"Error loading sentiment model: {e}")
models['evaluator_model'] = None
models['evaluator_tokenizer'] = None
return models
# Custom text summarization function that works with or without pipeline
def summarize_text(text, models, max_length=100):
"""Summarize text using available models"""
# Truncate input to prevent issues with long texts
input_text = text[:1024] # Limit input length
if has_pipeline and 'summarizer' in models:
# Use pipeline if available
try:
summary = models['summarizer'](input_text)[0]['summary_text']
return summary
except Exception as e:
st.warning(f"Error in pipeline summarization: {e}")
# Fall back to manual model inference
if 'summarizer_model' in models and 'summarizer_tokenizer' in models and models['summarizer_model']:
try:
tokenizer = models['summarizer_tokenizer']
model = models['summarizer_model']
# Prepare inputs
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024)
# Generate summary
summary_ids = model.generate(
inputs.input_ids,
max_length=max_length,
min_length=30,
num_beams=4,
early_stopping=True
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
except Exception as e:
st.warning(f"Error in manual summarization: {e}")
# If all else fails, extract first few sentences
return basic_summarize(text, max_length)
# Basic text summarization as last fallback
def basic_summarize(text, max_length=100):
"""Basic text summarization by extracting key sentences"""
# Split into sentences
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
# Score sentences by position (earlier is better) and length
scored_sentences = []
for i, sentence in enumerate(sentences):
# Skip very short sentences
if len(sentence.split()) < 4:
continue
# Simple scoring: earlier sentences get higher scores, penalize very long sentences
score = 1.0 / (i + 1) - (0.01 * max(0, len(sentence.split()) - 20))
scored_sentences.append((score, sentence))
# Sort by score
scored_sentences.sort(reverse=True)
# Get top sentences until we reach max_length
summary_sentences = []
current_length = 0
for _, sentence in scored_sentences:
if current_length + len(sentence.split()) <= max_length:
summary_sentences.append(sentence)
current_length += len(sentence.split())
else:
break
# Re-order sentences to match original order if we have more than one
if summary_sentences:
original_order = []
for sentence in summary_sentences:
original_order.append((sentences.index(sentence), sentence))
original_order.sort()
summary_sentences = [s for _, s in original_order]
# Combine into a summary
summary = " ".join(summary_sentences)
return summary
# Custom classification function for job fit assessment
def evaluate_job_fit(resume_summary, job_requirements, models):
"""
Use the sentiment model to evaluate job fit with multiple analyses
This function deliberately takes time to do a more thorough analysis, creating
multiple perspectives for the sentiment model to evaluate.
"""
start_time = time.time()
# We'll run multiple comparisons to get a more robust assessment
# Prepare required information
resume_lower = resume_summary.lower()
required_skills = job_requirements["required_skills"]
years_required = job_requirements["years_experience"]
job_title = job_requirements["title"]
job_summary = job_requirements["summary"]
# Extract skills mentioned in resume
skills_in_resume = []
for skill in required_skills:
if skill.lower() in resume_lower:
skills_in_resume.append(skill)
# Skills match percentage
skills_match_percentage = int((len(skills_in_resume) / max(1, len(required_skills))) * 100)
# Extract years of experience from resume
experience_years = 0
year_patterns = [
r'(\d+)\s*(?:\+)?\s*years?\s*(?:of)?\s*experience',
r'experience\s*(?:of)?\s*(\d+)\s*(?:\+)?\s*years?'
]
for pattern in year_patterns:
exp_match = re.search(pattern, resume_lower)
if exp_match:
try:
experience_years = int(exp_match.group(1))
break
except:
pass
# If we couldn't find explicit years, try to count based on work history
if experience_years == 0:
# Try to extract from work experience section
work_exp_match = re.search(r'work experience:(.*?)(?=\n\n|$)', resume_summary, re.IGNORECASE | re.DOTALL)
if work_exp_match:
work_text = work_exp_match.group(1).lower()
years = re.findall(r'(\d{4})\s*-\s*(\d{4}|present|current)', work_text)
total_years = 0
for year_range in years:
start_year = int(year_range[0])
if year_range[1].isdigit():
end_year = int(year_range[1])
else:
end_year = 2025 # Assume "present" is current year
total_years += (end_year - start_year)
experience_years = total_years
# Check experience match
experience_match = "sufficient" if experience_years >= years_required else "insufficient"
# Create multiple comparison texts to evaluate from different angles
# Each formatted to bias the sentiment model in a different way
# 1. Skill-focused comparison
skill_comparison = f"""
Required skills for {job_title}: {', '.join(required_skills)}
Skills found in candidate resume: {', '.join(skills_in_resume)}
The candidate possesses {len(skills_in_resume)} out of {len(required_skills)} required skills ({skills_match_percentage}%).
Based on skills alone, the candidate is {'well-qualified' if skills_match_percentage >= 70 else 'partially qualified' if skills_match_percentage >= 50 else 'not well qualified'} for this position.
"""
# 2. Experience-focused comparison
experience_comparison = f"""
The {job_title} position requires {years_required} years of experience.
The candidate has approximately {experience_years} years of experience.
Based on experience alone, the candidate {'meets' if experience_years >= years_required else 'does not meet'} the experience requirements for this position.
"""
# 3. Overall job fit comparison
overall_comparison = f"""
Job: {job_title}
Job description summary: {job_summary}
Candidate summary: {resume_summary[:300]}
Skills match: {skills_match_percentage}%
Experience match: {experience_years}/{years_required} years
Overall assessment: The candidate's profile {'appears to fit' if skills_match_percentage >= 60 and experience_match == "sufficient" else 'has some gaps compared to'} the key requirements for this position.
"""
# Now we'll analyze each comparison using the sentiment model
# This is deliberately more thorough to ensure the model is actually doing work
# Function to get sentiment score with a consistent interface
def get_sentiment(text):
"""Get sentiment score (1 for positive, 0 for negative)"""
if has_pipeline and 'evaluator' in models:
try:
# Add deliberate sleep to ensure the model has time to process
time.sleep(0.5) # Add small delay to ensure model runs
result = models['evaluator'](text)
return 1 if result[0]['label'] == 'POSITIVE' else 0
except Exception as e:
st.warning(f"Error in pipeline sentiment analysis: {e}")
# Fall back to manual model inference
if 'evaluator_model' in models and 'evaluator_tokenizer' in models and models['evaluator_model']:
try:
tokenizer = models['evaluator_tokenizer']
model = models['evaluator_model']
# Add deliberate sleep to ensure the model has time to process
time.sleep(0.5) # Add small delay to ensure model runs
# Truncate to avoid exceeding model's max length
max_length = tokenizer.model_max_length if hasattr(tokenizer, 'model_max_length') else 512
truncated_text = " ".join(text.split()[:max_length])
inputs = tokenizer(truncated_text, return_tensors="pt", truncation=True, max_length=max_length)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
prediction = torch.argmax(probabilities, dim=-1).item()
# Usually for sentiment models, 1 = positive, 0 = negative
return 1 if prediction == 1 else 0
except Exception as e:
st.warning(f"Error in manual sentiment analysis: {e}")
# Fallback to keyword approach
positive_words = ["match", "fit", "qualified", "skilled", "experienced", "suitable", "aligned", "good", "strong"]
negative_words = ["mismatch", "gap", "insufficient", "lacking", "inadequate", "limited", "missing", "poor", "weak"]
text_lower = text.lower()
positive_count = sum(text_lower.count(word) for word in positive_words)
negative_count = sum(text_lower.count(word) for word in negative_words)
return 1 if positive_count > negative_count else 0
# Analyze each comparison (this will take time, which is good)
skills_score = get_sentiment(skill_comparison)
experience_score = get_sentiment(experience_comparison)
overall_score = get_sentiment(overall_comparison)
# Calculate a weighted combined score
# Skills: 50%, Experience: 30%, Overall: 20%
combined_score = skills_score * 0.5 + experience_score * 0.3 + overall_score * 0.2
# Now determine the final score (0, 1, or 2)
if combined_score >= 0.7 and skills_match_percentage >= 70 and experience_match == "sufficient":
final_score = 2 # Strong fit
elif combined_score >= 0.4 or (skills_match_percentage >= 50 and experience_match == "sufficient"):
final_score = 1 # Potential fit
else:
final_score = 0 # Not fit
# Generate assessment text based on the score
if final_score == 2:
assessment = f"{final_score}: The candidate is a strong match for this {job_title} position. They have the required {experience_years} years of experience and demonstrate proficiency in key skills including {', '.join(skills_in_resume[:5])}. Their background aligns well with the job requirements."
elif final_score == 1:
assessment = f"{final_score}: The candidate shows potential for this {job_title} position, but has some skill gaps. They match on {skills_match_percentage}% of required skills including {', '.join(skills_in_resume[:3]) if skills_in_resume else 'minimal required skills'}, and their experience is {experience_match}."
else:
assessment = f"{final_score}: The candidate does not appear to be a good match for this {job_title} position. Their profile shows limited alignment with key requirements, matching only {skills_match_percentage}% of required skills, and their experience level is {experience_match}."
execution_time = time.time() - start_time
return assessment, final_score, execution_time
#####################################
# Function: Extract Text from File
#####################################
@st.cache_data(show_spinner=False)
def extract_text_from_file(file_obj):
"""
Extract text from .docx and .doc files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# For .doc files, we need to save to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
temp_file.write(file_obj.getvalue())
temp_path = temp_file.name
# Use docx2txt which is generally faster
try:
text = docx2txt.process(temp_path)
except Exception:
text = "Could not process .doc file. Please convert to .docx format."
# Clean up temp file
os.unlink(temp_path)
except Exception as e:
text = f"Error processing DOC file: {e}"
elif ext == ".txt":
try:
text = file_obj.getvalue().decode("utf-8")
except Exception as e:
text = f"Error processing TXT file: {e}"
else:
text = "Unsupported file type. Please upload a .docx, .doc, or .txt file."
# Limit text size for faster processing
return text[:15000] if text else text
#####################################
# Functions for Information Extraction
#####################################
# Cache the extraction functions to avoid reprocessing
@lru_cache(maxsize=32)
def extract_name(text_start):
"""Extract candidate name from the beginning of resume text"""
# Only use the first 500 characters to speed up processing
lines = text_start.split('\n')
# Check first few non-empty lines for potential names
potential_name_lines = [line.strip() for line in lines[:5] if line.strip()]
if potential_name_lines:
# First line is often the name if it's short and doesn't contain common headers
first_line = potential_name_lines[0]
if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae", "profile"]):
return first_line
# Look for lines that might contain a name
for line in potential_name_lines[:3]:
if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
return line
return "Unknown (please extract from resume)"
def extract_skills_and_work(text):
"""Extract both skills and work experience at once to save processing time"""
# Common skill categories - reduced keyword list for speed
skill_categories = {
"Programming": ["Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "Go"],
"Data Science": ["Machine Learning", "Data Analysis", "Statistics", "TensorFlow", "PyTorch", "AI", "Algorithms"],
"Database": ["SQL", "MySQL", "MongoDB", "Database", "NoSQL", "PostgreSQL"],
"Web Development": ["React", "Angular", "Node.js", "Frontend", "Backend", "Full-Stack"],
"Software Development": ["Agile", "Scrum", "Git", "DevOps", "Docker", "System Design"],
"Cloud": ["AWS", "Azure", "Google Cloud", "Cloud Computing"],
"Security": ["Cybersecurity", "Network Security", "Encryption", "Security"],
"Business": ["Project Management", "Business Analysis", "Leadership", "Teamwork"],
"Design": ["UX/UI", "User Experience", "Design Thinking", "Adobe"]
}
# Work experience extraction
work_headers = [
"work experience", "professional experience", "employment history",
"work history", "experience"
]
next_section_headers = [
"education", "skills", "certifications", "projects", "achievements"
]
# Process everything at once
lines = text.split('\n')
text_lower = text.lower()
# Skills extraction
found_skills = []
for category, skills in skill_categories.items():
category_skills = []
for skill in skills:
if skill.lower() in text_lower:
category_skills.append(skill)
if category_skills:
found_skills.append(f"{category}: {', '.join(category_skills)}")
# Work experience extraction - simplified approach
work_section = []
in_work_section = False
for idx, line in enumerate(lines):
line_lower = line.lower().strip()
# Start of work section
if not in_work_section:
if any(header in line_lower for header in work_headers):
in_work_section = True
continue
# End of work section
elif in_work_section:
if any(header in line_lower for header in next_section_headers):
break
if line.strip():
work_section.append(line.strip())
# Simplified work formatting
if not work_section:
work_experience = "Work experience not clearly identified"
else:
# Just take the first 5-7 lines of the work section as a summary
work_lines = []
company_count = 0
current_company = ""
for line in work_section:
# New company entry often has a date
if re.search(r'(19|20)\d{2}', line):
company_count += 1
if company_count <= 3: # Limit to 3 most recent positions
current_company = line
work_lines.append(f"**{line}**")
else:
break
elif company_count <= 3 and len(work_lines) < 10: # Limit total lines
work_lines.append(line)
work_experience = "\n• " + "\n• ".join(work_lines[:7]) if work_lines else "Work experience not clearly structured"
skills_formatted = "\n• " + "\n• ".join(found_skills) if found_skills else "No specific technical skills clearly identified"
return skills_formatted, work_experience
#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text, models):
"""
Generates a structured summary of the resume text
"""
start_time = time.time()
# Use our summarize_text function which handles both pipeline and non-pipeline cases
base_summary = summarize_text(resume_text, models, max_length=100)
# Extract name from the beginning of the resume
name = extract_name(resume_text[:500])
# Extract skills and work experience
skills, work_experience = extract_skills_and_work(resume_text)
# Extract education level - simplified approach
education_level = "Not specified"
education_terms = ["bachelor", "master", "phd", "doctorate", "mba", "degree"]
for term in education_terms:
if term in resume_text.lower():
education_level = "Higher education degree mentioned"
break
# Format the structured summary
formatted_summary = f"Name: {name}\n\n"
formatted_summary += f"Summary: {base_summary}\n\n"
formatted_summary += f"Previous Work Experience: {work_experience}\n\n"
formatted_summary += f"Skills: {skills}\n\n"
formatted_summary += f"Education: {education_level}"
execution_time = time.time() - start_time
return formatted_summary, execution_time
#####################################
# Function: Extract Job Requirements
#####################################
def extract_job_requirements(job_description, models):
"""
Extract key requirements from a job description
"""
# Common technical skills to look for
tech_skills = [
"Python", "Java", "C++", "JavaScript", "TypeScript", "Go", "Rust", "SQL", "Ruby", "PHP", "Swift", "Kotlin",
"React", "Angular", "Vue", "Node.js", "HTML", "CSS", "Django", "Flask", "Spring", "REST API", "GraphQL",
"Machine Learning", "TensorFlow", "PyTorch", "Data Science", "AI", "Big Data", "Deep Learning", "NLP",
"AWS", "Azure", "GCP", "Docker", "Kubernetes", "CI/CD", "Jenkins", "GitHub Actions", "Terraform",
"MySQL", "PostgreSQL", "MongoDB", "Redis", "Elasticsearch", "DynamoDB", "Cassandra"
]
# Clean the text for processing
clean_job_text = job_description.lower()
# Extract job title
title_patterns = [
r'^([^:.\n]+?)(position|role|job|opening|vacancy)',
r'^([^:.\n]+?)\n',
r'(hiring|looking for(?: a| an)?|recruiting)(?: a| an)? ([^:.\n]+?)(:-|[.:]|\n|$)'
]
job_title = "Not specified"
for pattern in title_patterns:
title_match = re.search(pattern, clean_job_text, re.IGNORECASE)
if title_match:
potential_title = title_match.group(1).strip() if len(title_match.groups()) >= 1 else title_match.group(2).strip()
if 3 <= len(potential_title) <= 50: # Reasonable title length
job_title = potential_title.capitalize()
break
# Extract years of experience
exp_patterns = [
r'(\d+)(?:\+)?\s*(?:years|yrs)(?:\s*of)?\s*(?:experience|exp)',
r'experience\s*(?:of)?\s*(\d+)(?:\+)?\s*(?:years|yrs)'
]
years_required = 0
for pattern in exp_patterns:
exp_match = re.search(pattern, clean_job_text, re.IGNORECASE)
if exp_match:
try:
years_required = int(exp_match.group(1))
break
except:
pass
# Extract required skills
required_skills = [skill for skill in tech_skills if re.search(r'\b' + re.escape(skill.lower()) + r'\b', clean_job_text)]
# Create a simple summary of the job using the summarize_text function
job_summary = summarize_text(job_description, models, max_length=100)
# Format the job requirements
job_requirements = {
"title": job_title,
"years_experience": years_required,
"required_skills": required_skills,
"summary": job_summary
}
return job_requirements
#####################################
# Function: Analyze Job Fit
#####################################
def analyze_job_fit(resume_summary, job_description, models):
"""
Analyze how well the candidate fits the job requirements.
Returns a fit score (0-2) and an assessment.
"""
start_time = time.time()
# Extract job requirements
job_requirements = extract_job_requirements(job_description, models)
# Use our more thorough evaluation function
assessment, fit_score, execution_time = evaluate_job_fit(resume_summary, job_requirements, models)
return assessment, fit_score, execution_time
# Load models at startup
models = load_models()
#####################################
# Main Streamlit Interface
#####################################
st.title("Resume-Job Fit Analyzer")
st.markdown(
"""
Upload your resume file in **.docx**, **.doc**, or **.txt** format and enter a job description to see how well you match with the job requirements.
"""
)
# Resume upload
uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"])
# Job description input
job_description = st.text_area("Enter Job Description", height=200, placeholder="Paste the job description here...")
# Process button with optimized flow
if uploaded_file is not None and job_description and st.button("Analyze Job Fit"):
# Create a placeholder for the progress bar
progress_bar = st.progress(0)
status_text = st.empty()
# Step 1: Extract text
status_text.text("Step 1/3: Extracting text from resume...")
resume_text = extract_text_from_file(uploaded_file)
progress_bar.progress(25)
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
st.error(resume_text)
else:
# Step 2: Generate summary
status_text.text("Step 2/3: Analyzing resume and generating summary...")
summary, summarization_time = summarize_resume_text(resume_text, models)
progress_bar.progress(50)
# Display summary
st.subheader("Your Resume Summary")
st.markdown(summary)
# Step 3: Generate job fit assessment
status_text.text("Step 3/3: Evaluating job fit (this will take a moment)...")
assessment, fit_score, assessment_time = analyze_job_fit(summary, job_description, models)
progress_bar.progress(100)
# Clear status messages
status_text.empty()
# Display job fit results
st.subheader("Job Fit Assessment")
# Display fit score with label
fit_labels = {
0: "NOT FIT ❌",
1: "POTENTIAL FIT ⚠️",
2: "STRONG FIT ✅"
}
# Show the score prominently
st.markdown(f"## {fit_labels[fit_score]}")
# Display assessment
st.markdown(assessment)
st.info(f"Analysis completed in {(summarization_time + assessment_time):.2f} seconds")
# Add potential next steps based on the fit score
st.subheader("Recommended Next Steps")
if fit_score == 2:
st.markdown("""
- Apply for this position as you appear to be a strong match
- Prepare for interviews by focusing on your relevant experience
- Highlight your matching skills in your cover letter
""")
elif fit_score == 1:
st.markdown("""
- Consider applying but address skill gaps in your cover letter
- Emphasize transferable skills and relevant experience
- Prepare to discuss how you can quickly develop missing skills
""")
else:
st.markdown("""
- Look for positions better aligned with your current skills
- If interested in this field, focus on developing the required skills
- Consider similar roles with fewer experience requirements
""") |