Spaces:
Sleeping
Sleeping
File size: 6,233 Bytes
cf8a522 8e1d297 9b62bb7 8e1d297 cf8a522 8e1d297 9b62bb7 0755951 8e1d297 fda9c54 8e1d297 9b62bb7 8e1d297 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
import re
import torch # Explicitly imported if you want to use torch directly
import tempfile
from io import BytesIO
import streamlit as st
from PIL import Image
from transformers import pipeline
from pdf2image import convert_from_bytes
#####################################
# Load the OCR Pipeline (Uses Torch)
#####################################
try:
# Make sure that you're using an updated version of the transformers library (>=4.x)
ocr_pipeline = pipeline("image-to-text", model="YouLiXiya/tinyllava-v1.0-1.1b-hf")
st.write("Model loaded successfully!")
except Exception as e:
st.error(f"Error loading model: {e}")
st.stop()
#####################################
# Utility: Convert PDF to Images
#####################################
def convert_pdf_to_images(pdf_bytes):
try:
images = convert_from_bytes(pdf_bytes)
return images
except Exception as e:
st.error(f"PDF conversion error: {e}")
return []
#####################################
# Pipeline: Extract Text with OCR Pipeline
#####################################
def extract_text_from_file(file_obj):
file_extension = os.path.splitext(file_obj.name)[1].lower()
full_text = ""
if file_extension == ".pdf":
file_bytes = file_obj.read()
images = convert_pdf_to_images(file_bytes)
for img in images:
result = ocr_pipeline(img)
if isinstance(result, list) and "text" in result[0]:
full_text += result[0]["text"] + "\n"
else:
try:
img = Image.open(file_obj)
result = ocr_pipeline(img)
if isinstance(result, list) and "text" in result[0]:
full_text = result[0]["text"]
except Exception as e:
full_text = f"Error processing image: {e}"
return full_text
#####################################
# Information Extraction Functions
#####################################
def extract_resume_info(text):
info = {
"Name": None,
"Age": None,
"Job Experience": None,
"Skills": None,
"Expected Industry/Direction": None,
}
# Extract name, e.g., "Name: John Doe"
name_match = re.search(r"[Nn]ame[:\-]\s*([A-Za-z\s]+)", text)
if name_match:
info["Name"] = name_match.group(1).strip()
else:
potential_names = re.findall(r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)+\b', text)
if potential_names:
info["Name"] = potential_names[0]
# Extract age
age_match = re.search(r"[Aa]ge[:\-]\s*(\d{1,2})", text)
if age_match:
info["Age"] = age_match.group(1)
# Extract job experience (years)
exp_match = re.search(r"(\d+)\s+(?:years|yrs)\s+(?:of\s+)?experience", text, re.IGNORECASE)
if exp_match:
info["Job Experience"] = exp_match.group(1) + " years"
else:
exp_line = re.search(r"(Experience|Background)[:\-]\s*(.*)", text, re.IGNORECASE)
if exp_line:
info["Job Experience"] = exp_line.group(2).strip()
# Extract skills
skills_match = re.search(r"[Ss]kills[:\-]\s*(.+)", text)
if skills_match:
skills_text = skills_match.group(1)
skills = [s.strip() for s in re.split(r",|\n", skills_text) if s.strip()]
info["Skills"] = skills
# Extract expected industry/direction
industry_match = re.search(r"(Industry|Interest|Direction)[:\-]\s*(.+)", text, re.IGNORECASE)
if industry_match:
info["Expected Industry/Direction"] = industry_match.group(2).strip()
return info
#####################################
# Candidate Comparison Function
#####################################
def compare_candidate_with_company(resume_info, company_requirements):
candidate_industry = resume_info.get("Expected Industry/Direction", "")
candidate_keywords = set(candidate_industry.lower().split())
company_keywords = set(company_requirements.lower().split())
common = candidate_keywords.intersection(company_keywords)
suitable = len(common) > 0
# Check skills matching if available
if resume_info.get("Skills"):
candidate_skills = {skill.lower() for skill in resume_info["Skills"]}
company_skills = set(company_requirements.lower().split())
common_skills = candidate_skills.intersection(company_skills)
if len(common_skills) >= 1:
suitable = True
return {
"Common Keywords": list(common) if common else [],
"Suitable": "Yes" if suitable else "No"
}
#####################################
# Main Processing Logic
#####################################
def process_resume(file_obj, company_requirements):
if file_obj is None:
return None, None, None
resume_text = extract_text_from_file(file_obj)
resume_info = extract_resume_info(resume_text)
comparison = compare_candidate_with_company(resume_info, company_requirements)
return resume_text, resume_info, comparison
#####################################
# Streamlit UI
#####################################
st.title("Resume Extraction and Candidate Matching")
st.markdown("""
This app uses an image-to-text pipeline (powered by `YouLiXiya/tinyllava-v1.0-1.1b-hf` and PyTorch) to
extract details from uploaded resume files (PDF or image formats). It then parses critical candidate
information and compares it against company requirements.
""")
uploaded_file = st.file_uploader("Upload Resume (PDF or Image)", type=["pdf", "png", "jpg", "jpeg"])
company_requirements = st.text_input("Enter Company Requirements/Criteria (e.g., industry, skills)",
placeholder="Example: Technology, Python, Software Development")
if st.button("Process Resume"):
if uploaded_file is None:
st.error("Please upload a file first.")
else:
with st.spinner("Processing..."):
resume_text, resume_info, comparison = process_resume(uploaded_file, company_requirements)
st.subheader("Extracted Resume Text")
st.text_area("", resume_text, height=200)
st.subheader("Parsed Resume Information")
st.json(resume_info)
st.subheader("Comparison with Company Requirements")
st.json(comparison) |