Spaces:
Sleeping
Sleeping
File size: 23,430 Bytes
fa79427 fc55093 fa79427 fc55093 986332a e472708 986332a 8e57a3e d2d6501 fc55093 e472708 ca31f44 fc55093 e472708 fc55093 5d07781 fc55093 8e57a3e e472708 8e57a3e d21b321 8e57a3e e472708 8e57a3e e472708 986332a e472708 986332a e472708 986332a 8e57a3e e472708 fc55093 d3c5eab 8e57a3e e472708 8e57a3e e472708 8e57a3e e472708 8e57a3e e472708 8e57a3e e472708 8e57a3e e472708 8e57a3e e472708 8e57a3e 986332a e472708 986332a e472708 986332a e472708 986332a e472708 986332a e472708 986332a e472708 986332a e472708 fc55093 e472708 fc55093 e472708 fc55093 e472708 fc55093 fa79427 fc55093 fa79427 e472708 fc55093 fa79427 fc55093 e472708 fc55093 fa79427 e472708 fc55093 e472708 fa79427 e472708 fc55093 fa79427 e472708 fc55093 99e5c00 e472708 99e5c00 e472708 99e5c00 e472708 99e5c00 e472708 99e5c00 e472708 99e5c00 e472708 99e5c00 fc55093 e472708 fc55093 986332a e472708 fc55093 99e5c00 88107c2 99e5c00 88107c2 e472708 17a94ec e472708 17a94ec e472708 88107c2 99e5c00 17a94ec e472708 fc55093 8e57a3e e472708 88107c2 e472708 88107c2 fc55093 d3c5eab fc55093 d3c5eab fc55093 e472708 fc55093 d3c5eab fc55093 848089c fc55093 848089c d3c5eab fc55093 848089c fc55093 88107c2 fc55093 e472708 19a0df1 8e57a3e 848089c e472708 848089c fc55093 88107c2 848089c 3e9d890 e472708 fc55093 8057156 e472708 d3c5eab e472708 7733908 e472708 ee0c7bb e472708 986332a fc55093 0cda46e fc55093 0cda46e e472708 d3c5eab e472708 0cda46e fc55093 e472708 0cda46e fc55093 0cda46e fc55093 0cda46e fc55093 e472708 0cda46e e472708 19a0df1 e472708 0cda46e e472708 0cda46e b58a2f9 546267f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
import os
import io
import streamlit as st
import docx
import docx2txt
import tempfile
import time
import re
import pandas as pd
from functools import lru_cache
# Handle imports
try:
from transformers import pipeline
has_pipeline = True
except ImportError:
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM
import torch
has_pipeline = False
st.warning("Using basic transformers functionality instead of pipeline API")
# Set page title and hide sidebar
st.set_page_config(page_title="Resume-Job Fit Analyzer", initial_sidebar_state="collapsed")
st.markdown("""<style>[data-testid="collapsedControl"] {display: none;}section[data-testid="stSidebar"] {display: none;}</style>""", unsafe_allow_html=True)
#####################################
# Preload Models & Helper Functions
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
"""Load models at startup"""
with st.spinner("Loading AI models... This may take a minute on first run."):
models = {}
# Load summarization model
if has_pipeline:
models['summarizer'] = pipeline("summarization", model="Falconsai/text_summarization", max_length=100, truncation=True)
else:
try:
models['summarizer_model'] = AutoModelForSeq2SeqLM.from_pretrained("Falconsai/text_summarization")
models['summarizer_tokenizer'] = AutoTokenizer.from_pretrained("Falconsai/text_summarization")
except Exception as e:
st.error(f"Error loading summarization model: {e}")
models['summarizer_model'] = models['summarizer_tokenizer'] = None
# Load evaluation model
if has_pipeline:
models['evaluator'] = pipeline("sentiment-analysis", model="CR7CAD/RobertaFinetuned")
else:
try:
models['evaluator_model'] = AutoModelForSequenceClassification.from_pretrained("CR7CAD/RobertaFinetuned")
models['evaluator_tokenizer'] = AutoTokenizer.from_pretrained("CR7CAD/RobertaFinetuned")
except Exception as e:
st.error(f"Error loading sentiment model: {e}")
models['evaluator_model'] = models['evaluator_tokenizer'] = None
return models
def summarize_text(text, models, max_length=100):
"""Summarize text using available models with fallbacks"""
# Truncate input to prevent issues with long texts
input_text = text[:1024]
# Try pipeline first
if has_pipeline and 'summarizer' in models:
try:
return models['summarizer'](input_text)[0]['summary_text']
except Exception as e:
st.warning(f"Error in pipeline summarization: {e}")
# Try manual model
if 'summarizer_model' in models and 'summarizer_tokenizer' in models and models['summarizer_model']:
try:
tokenizer = models['summarizer_tokenizer']
model = models['summarizer_model']
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024)
summary_ids = model.generate(inputs.input_ids, max_length=max_length, min_length=30, num_beams=4, early_stopping=True)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
except Exception as e:
st.warning(f"Error in manual summarization: {e}")
# Fallback to basic summarization
return basic_summarize(text, max_length)
def basic_summarize(text, max_length=100):
"""Basic extractive text summarization"""
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
# Score and filter sentences
scored_sentences = []
for i, sentence in enumerate(sentences):
if len(sentence.split()) >= 4:
score = 1.0 / (i + 1) - (0.01 * max(0, len(sentence.split()) - 20))
scored_sentences.append((score, sentence))
# Get top sentences
scored_sentences.sort(reverse=True)
summary_sentences = []
current_length = 0
for _, sentence in scored_sentences:
if current_length + len(sentence.split()) <= max_length:
summary_sentences.append(sentence)
current_length += len(sentence.split())
else:
break
# Restore original sentence order
if summary_sentences:
original_order = [(sentences.index(s), s) for s in summary_sentences]
original_order.sort()
summary_sentences = [s for _, s in original_order]
return " ".join(summary_sentences)
#####################################
# Information Extraction Functions
#####################################
@st.cache_data(show_spinner=False)
def extract_text_from_file(file_obj):
"""Extract text from uploaded document file"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
return f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
temp_file.write(file_obj.getvalue())
temp_path = temp_file.name
text = docx2txt.process(temp_path)
os.unlink(temp_path)
except Exception as e:
return f"Error processing DOC file: {e}"
elif ext == ".txt":
try:
text = file_obj.getvalue().decode("utf-8")
except Exception as e:
return f"Error processing TXT file: {e}"
else:
return "Unsupported file type. Please upload a .docx, .doc, or .txt file."
return text[:15000] if text else text
def extract_skills(text):
"""Extract key skills from the resume"""
skill_keywords = {
"Programming": ["Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "Go", "React", "Angular", "Vue", "Node.js"],
"Data Science": ["Machine Learning", "Data Analysis", "Statistics", "TensorFlow", "PyTorch", "AI", "Algorithms", "NLP", "Deep Learning"],
"Database": ["SQL", "MySQL", "MongoDB", "Database", "NoSQL", "PostgreSQL", "Oracle", "Redis"],
"Web Development": ["React", "Angular", "Node.js", "Frontend", "Backend", "Full-Stack", "REST API", "GraphQL"],
"Software Development": ["Agile", "Scrum", "Git", "DevOps", "Docker", "System Design", "CI/CD", "Jenkins"],
"Cloud": ["AWS", "Azure", "Google Cloud", "Cloud Computing", "Lambda", "S3", "EC2"],
"Security": ["Cybersecurity", "Network Security", "Encryption", "Security"],
"Business": ["Project Management", "Business Analysis", "Leadership", "Teamwork", "Agile", "Scrum"],
"Design": ["UX/UI", "User Experience", "Design Thinking", "Adobe", "Figma"]
}
text_lower = text.lower()
return [skill for category, skills in skill_keywords.items()
for skill in skills if skill.lower() in text_lower]
@lru_cache(maxsize=32)
def extract_name(text_start):
"""Extract candidate name from the beginning of resume text"""
lines = text_start.split('\n')
potential_name_lines = [line.strip() for line in lines[:5] if line.strip()]
if potential_name_lines:
first_line = potential_name_lines[0]
if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae", "profile"]):
return first_line
for line in potential_name_lines[:3]:
if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
return line
return "Unknown (please extract from resume)"
def extract_age(text):
"""Extract candidate age from resume text"""
age_patterns = [
r'age:?\s*(\d{1,2})',
r'(\d{1,2})\s*years\s*old',
r'dob:.*(\d{4})',
r'date of birth:.*(\d{4})'
]
text_lower = text.lower()
for pattern in age_patterns:
matches = re.search(pattern, text_lower)
if matches:
# Convert birth year to age if needed
if len(matches.group(1)) == 4:
try:
return str(2025 - int(matches.group(1)))
except:
pass
return matches.group(1)
return "Not specified"
def extract_industry(text):
"""Extract expected job industry from resume"""
industry_keywords = {
"Technology": ["software", "programming", "developer", "IT", "tech", "computer", "digital"],
"Finance": ["banking", "financial", "accounting", "finance", "analyst"],
"Healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor", "patient"],
"Education": ["teaching", "teacher", "professor", "education", "university", "school", "academic"],
"Marketing": ["marketing", "advertising", "digital marketing", "social media", "brand"],
"Engineering": ["engineer", "engineering", "mechanical", "civil", "electrical"],
"Data Science": ["data science", "machine learning", "AI", "analytics", "big data"],
"Management": ["manager", "management", "leadership", "executive", "director"],
"Consulting": ["consultant", "consulting", "advisor"],
"Sales": ["sales", "business development", "account manager", "client relations"]
}
text_lower = text.lower()
industry_counts = {industry: sum(text_lower.count(keyword.lower()) for keyword in keywords)
for industry, keywords in industry_keywords.items()}
return max(industry_counts.items(), key=lambda x: x[1])[0] if any(industry_counts.values()) else "Not clearly specified"
def extract_job_position(text):
"""Extract expected job position from resume"""
objective_patterns = [
r'objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
r'career\s*objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
r'professional\s*summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
r'summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
r'seeking\s*(?:a|an)?\s*(?:position|role|opportunity)\s*(?:as|in)?\s*(?:a|an)?\s*([^.]*)'
]
text_lower = text.lower()
for pattern in objective_patterns:
match = re.search(pattern, text_lower, re.IGNORECASE | re.DOTALL)
if match:
objective_text = match.group(1).strip()
job_titles = ["developer", "engineer", "analyst", "manager", "director", "specialist",
"coordinator", "consultant", "designer", "architect", "administrator"]
for title in job_titles:
if title in objective_text:
title_pattern = r'(?:a|an)?\s*(\w+\s+' + title + r'|\w+\s+\w+\s+' + title + r')'
title_match = re.search(title_pattern, objective_text)
if title_match:
return title_match.group(1).strip().title()
return title.title()
if len(objective_text) > 10:
words = objective_text.split()
return " ".join(words[:10]).title() + "..." if len(words) > 10 else objective_text.title()
job_patterns = [
r'experience:.*?(\w+\s+\w+(?:\s+\w+)?)(?=\s*at|\s*\(|\s*-|\s*,|\s*\d{4}|\n)',
r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*current\s*\)',
r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*present\s*\)'
]
for pattern in job_patterns:
match = re.search(pattern, text_lower, re.IGNORECASE)
if match:
return match.group(1).strip().title()
return "Not explicitly stated"
#####################################
# Core Analysis Functions
#####################################
def summarize_resume_text(resume_text, models):
"""Generate a structured summary of resume text"""
start_time = time.time()
# Extract critical information
name = extract_name(resume_text[:500])
age = extract_age(resume_text)
industry = extract_industry(resume_text)
job_position = extract_job_position(resume_text)
skills = extract_skills(resume_text)
# Generate overall summary
try:
if has_pipeline and 'summarizer' in models:
model_summary = models['summarizer'](resume_text[:2000], max_length=100, min_length=30, do_sample=False)[0]['summary_text']
else:
model_summary = summarize_text(resume_text, models, max_length=100)
except Exception as e:
st.warning(f"Error in resume summarization: {e}")
model_summary = "Error generating summary. Please check the original resume."
# Format the structured summary
formatted_summary = f"Name: {name}\n\n"
formatted_summary += f"Age: {age}\n\n"
formatted_summary += f"Expected Industry: {industry}\n\n"
formatted_summary += f"Expected Job Position: {job_position}\n\n"
formatted_summary += f"Skills: {', '.join(skills)}\n\n"
formatted_summary += f"Summary: {model_summary}"
return formatted_summary, time.time() - start_time
def extract_job_requirements(job_description, models):
"""Extract key requirements from a job description"""
# Combined skill list (abridged for brevity)
tech_skills = [
"Python", "Java", "C++", "JavaScript", "TypeScript", "SQL", "HTML", "CSS", "React", "Angular",
"Machine Learning", "Data Science", "AI", "AWS", "Azure", "Docker", "Kubernetes", "MySQL",
"MongoDB", "PostgreSQL", "Project Management", "Agile", "Scrum", "Leadership", "Communication",
"Problem Solving", "Git", "DevOps", "Full Stack", "Mobile Development", "Android", "iOS"
]
clean_job_text = job_description.lower()
# Extract job title
title_patterns = [
r'^([^:.\n]+?)(position|role|job|opening|vacancy)',
r'^([^:.\n]+?)\n',
r'(hiring|looking for(?: a| an)?|recruiting)(?: a| an)? ([^:.\n]+?)(:-|[.:]|\n|$)'
]
job_title = "Not specified"
for pattern in title_patterns:
title_match = re.search(pattern, clean_job_text, re.IGNORECASE)
if title_match:
potential_title = title_match.group(1).strip() if len(title_match.groups()) >= 1 else title_match.group(2).strip()
if 3 <= len(potential_title) <= 50:
job_title = potential_title.capitalize()
break
# Extract years of experience
exp_patterns = [
r'(\d+)(?:\+)?\s*(?:years|yrs)(?:\s*of)?\s*(?:experience|exp)',
r'experience\s*(?:of)?\s*(\d+)(?:\+)?\s*(?:years|yrs)'
]
years_required = 0
for pattern in exp_patterns:
exp_match = re.search(pattern, clean_job_text, re.IGNORECASE)
if exp_match:
try:
years_required = int(exp_match.group(1))
break
except:
pass
# Extract required skills
required_skills = [skill for skill in tech_skills if re.search(r'\b' + re.escape(skill.lower()) + r'\b', clean_job_text)]
# Fallback if no skills found
if not required_skills:
words = re.findall(r'\b\w{4,}\b', clean_job_text)
word_counts = {}
for word in words:
if word not in ["with", "that", "this", "have", "from", "they", "will", "what", "your", "their", "about"]:
word_counts[word] = word_counts.get(word, 0) + 1
sorted_words = sorted(word_counts.items(), key=lambda x: x[1], reverse=True)
required_skills = [word.capitalize() for word, _ in sorted_words[:5]]
job_summary = summarize_text(job_description, models, max_length=100)
return {
"title": job_title,
"years_experience": years_required,
"required_skills": required_skills,
"summary": job_summary
}
def evaluate_job_fit(resume_summary, job_requirements, models):
"""Evaluate how well a resume matches job requirements"""
start_time = time.time()
# Extract information
required_skills = job_requirements["required_skills"]
years_required = job_requirements["years_experience"]
job_title = job_requirements["title"]
skills_mentioned = extract_skills(resume_summary)
# Calculate match percentages
matching_skills = [skill for skill in required_skills if skill in skills_mentioned]
skill_match_percentage = len(matching_skills) / len(required_skills) if required_skills else 0
# Extract experience level from resume
experience_pattern = r'(\d+)\+?\s*years?\s*(?:of)?\s*experience'
years_experience = 0
experience_match = re.search(experience_pattern, resume_summary, re.IGNORECASE)
if experience_match:
try:
years_experience = int(experience_match.group(1))
except:
pass
# Calculate match scores
exp_match_ratio = min(1.0, years_experience / max(1, years_required)) if years_required > 0 else 0.5
# Job title match score
title_words = [word for word in job_title.lower().split() if len(word) > 3]
title_matches = sum(1 for word in title_words if word in resume_summary.lower())
title_match = title_matches / len(title_words) if title_words else 0
# Calculate individual scores
skill_score = min(2, skill_match_percentage * 3)
exp_score = min(2, exp_match_ratio * 2)
title_score = min(2, title_match * 2)
# Extract candidate info
name_match = re.search(r'Name:\s*(.*?)(?=\n|\Z)', resume_summary)
name = name_match.group(1).strip() if name_match else "The candidate"
industry_match = re.search(r'Expected Industry:\s*(.*?)(?=\n|\Z)', resume_summary)
industry = industry_match.group(1).strip() if industry_match else "unspecified industry"
# Calculate final weighted score
weighted_score = (skill_score * 0.5) + (exp_score * 0.3) + (title_score * 0.2)
# Determine fit score
if weighted_score >= 1.5:
fit_score = 2 # Good fit
elif weighted_score >= 0.8:
fit_score = 1 # Potential fit
else:
fit_score = 0 # Not a fit
# Generate assessment text
missing_skills = [skill for skill in required_skills if skill not in skills_mentioned]
if fit_score == 2:
fit_assessment = f"{fit_score}: GOOD FIT - {name} demonstrates strong alignment with the {job_title} position. Their background in {industry} and professional experience appear well-suited for this role's requirements. The technical expertise matches what the position demands."
elif fit_score == 1:
fit_assessment = f"{fit_score}: POTENTIAL FIT - {name} shows potential for the {job_title} role with some relevant experience, though there are gaps in certain technical areas. Their {industry} background provides partial alignment with the position requirements. Additional training might be needed in {', '.join(missing_skills[:2])} if pursuing this opportunity."
else:
fit_assessment = f"{fit_score}: NO FIT - {name}'s current background shows limited alignment with this {job_title} position. Their experience level and technical background differ significantly from the role requirements. A position better matching their {industry} expertise might be more suitable."
return fit_assessment, fit_score, time.time() - start_time
def analyze_job_fit(resume_summary, job_description, models):
"""End-to-end job fit analysis"""
start_time = time.time()
job_requirements = extract_job_requirements(job_description, models)
assessment, fit_score, execution_time = evaluate_job_fit(resume_summary, job_requirements, models)
return assessment, fit_score, time.time() - start_time
#####################################
# Main Function
#####################################
def main():
"""Main function for the Streamlit application"""
st.title("Resume-Job Fit Analyzer")
st.markdown("Upload your resume file in **.docx**, **.doc**, or **.txt** format and enter a job description to see how well you match with the job requirements.")
# Load models
models = load_models()
# User inputs
uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"])
job_description = st.text_area("Enter Job Description", height=200, placeholder="Paste the job description here...")
# Process when button clicked
if uploaded_file is not None and job_description and st.button("Analyze Job Fit"):
progress_bar = st.progress(0)
status_text = st.empty()
# Step 1: Extract text
status_text.text("Step 1/3: Extracting text from resume...")
resume_text = extract_text_from_file(uploaded_file)
progress_bar.progress(25)
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
st.error(resume_text)
else:
# Step 2: Generate summary
status_text.text("Step 2/3: Analyzing resume and generating summary...")
summary, summarization_time = summarize_resume_text(resume_text, models)
progress_bar.progress(50)
# Display summary
st.subheader("Your Resume Summary")
st.markdown(summary)
# Step 3: Generate job fit assessment
status_text.text("Step 3/3: Evaluating job fit (this will take a moment)...")
assessment, fit_score, assessment_time = analyze_job_fit(summary, job_description, models)
progress_bar.progress(100)
status_text.empty()
# Display results
st.subheader("Job Fit Assessment")
# Display score with appropriate styling
fit_labels = {0: "NOT FIT", 1: "POTENTIAL FIT", 2: "GOOD FIT"}
score_colors = {0: "red", 1: "orange", 2: "green"}
st.markdown(f"<h2 style='color: {score_colors[fit_score]};'>{fit_labels[fit_score]}</h2>", unsafe_allow_html=True)
st.markdown(assessment)
st.info(f"Analysis completed in {(summarization_time + assessment_time):.2f} seconds")
# Recommendations
st.subheader("Recommended Next Steps")
if fit_score == 2:
st.markdown("""
- Apply for this position as you appear to be a good match
- Prepare for interviews by focusing on your relevant experience
- Highlight your matching skills in your cover letter
""")
elif fit_score == 1:
st.markdown("""
- Consider applying but address skill gaps in your cover letter
- Emphasize transferable skills and relevant experience
- Prepare to discuss how you can quickly develop missing skills
""")
else:
st.markdown("""
- Look for positions better aligned with your current skills
- If interested in this field, focus on developing the required skills
- Consider similar roles with fewer experience requirements
""")
if __name__ == "__main__":
main() |