File size: 23,430 Bytes
fa79427
 
fc55093
fa79427
fc55093
 
 
 
 
 
986332a
e472708
986332a
 
 
 
8e57a3e
 
 
 
d2d6501
fc55093
e472708
 
ca31f44
fc55093
e472708
fc55093
 
5d07781
fc55093
 
 
 
8e57a3e
 
e472708
8e57a3e
 
d21b321
 
8e57a3e
 
e472708
8e57a3e
e472708
986332a
e472708
986332a
 
e472708
 
986332a
8e57a3e
e472708
fc55093
 
d3c5eab
8e57a3e
e472708
8e57a3e
e472708
8e57a3e
e472708
8e57a3e
 
e472708
8e57a3e
 
 
e472708
8e57a3e
 
 
 
 
e472708
 
8e57a3e
 
 
e472708
8e57a3e
 
986332a
e472708
986332a
 
e472708
986332a
 
e472708
 
 
986332a
e472708
986332a
 
 
 
 
 
 
 
 
 
 
e472708
986332a
e472708
986332a
 
 
e472708
fc55093
 
e472708
fc55093
 
 
e472708
fc55093
 
e472708
fc55093
fa79427
fc55093
 
fa79427
e472708
fc55093
fa79427
fc55093
 
 
e472708
 
fc55093
fa79427
e472708
fc55093
 
 
 
e472708
fa79427
e472708
fc55093
 
fa79427
e472708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc55093
99e5c00
 
 
 
 
e472708
 
99e5c00
 
 
 
 
 
e472708
 
99e5c00
e472708
99e5c00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e472708
 
99e5c00
e472708
99e5c00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e472708
99e5c00
 
 
 
 
 
 
 
 
 
 
 
 
 
fc55093
e472708
fc55093
986332a
e472708
fc55093
 
99e5c00
88107c2
99e5c00
 
 
 
88107c2
e472708
17a94ec
 
e472708
17a94ec
 
 
 
 
 
e472708
88107c2
99e5c00
 
 
 
17a94ec
 
e472708
fc55093
8e57a3e
e472708
 
88107c2
e472708
 
 
 
88107c2
fc55093
 
d3c5eab
fc55093
 
 
 
 
d3c5eab
 
fc55093
 
 
 
 
e472708
fc55093
 
d3c5eab
fc55093
848089c
fc55093
 
848089c
d3c5eab
fc55093
848089c
fc55093
 
 
 
 
 
 
 
88107c2
 
fc55093
e472708
19a0df1
 
 
 
 
 
 
 
 
8e57a3e
848089c
e472708
848089c
fc55093
88107c2
 
848089c
3e9d890
e472708
 
fc55093
8057156
e472708
 
 
 
 
d3c5eab
e472708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7733908
e472708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee0c7bb
e472708
 
 
 
 
 
986332a
fc55093
0cda46e
fc55093
0cda46e
 
 
e472708
d3c5eab
e472708
 
 
 
0cda46e
 
fc55093
e472708
0cda46e
 
 
fc55093
0cda46e
 
 
 
fc55093
0cda46e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc55093
e472708
0cda46e
 
e472708
 
19a0df1
e472708
0cda46e
 
 
e472708
0cda46e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b58a2f9
 
546267f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import os
import io
import streamlit as st
import docx
import docx2txt
import tempfile
import time
import re
import pandas as pd
from functools import lru_cache

# Handle imports
try:
    from transformers import pipeline
    has_pipeline = True
except ImportError:
    from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM
    import torch
    has_pipeline = False
    st.warning("Using basic transformers functionality instead of pipeline API")

# Set page title and hide sidebar
st.set_page_config(page_title="Resume-Job Fit Analyzer", initial_sidebar_state="collapsed")
st.markdown("""<style>[data-testid="collapsedControl"] {display: none;}section[data-testid="stSidebar"] {display: none;}</style>""", unsafe_allow_html=True)

#####################################
# Preload Models & Helper Functions
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
    """Load models at startup"""
    with st.spinner("Loading AI models... This may take a minute on first run."):
        models = {}
        
        # Load summarization model
        if has_pipeline:
            models['summarizer'] = pipeline("summarization", model="Falconsai/text_summarization", max_length=100, truncation=True)
        else:
            try:
                models['summarizer_model'] = AutoModelForSeq2SeqLM.from_pretrained("Falconsai/text_summarization")
                models['summarizer_tokenizer'] = AutoTokenizer.from_pretrained("Falconsai/text_summarization")
            except Exception as e:
                st.error(f"Error loading summarization model: {e}")
                models['summarizer_model'] = models['summarizer_tokenizer'] = None
        
        # Load evaluation model
        if has_pipeline:
            models['evaluator'] = pipeline("sentiment-analysis", model="CR7CAD/RobertaFinetuned")
        else:
            try:
                models['evaluator_model'] = AutoModelForSequenceClassification.from_pretrained("CR7CAD/RobertaFinetuned")
                models['evaluator_tokenizer'] = AutoTokenizer.from_pretrained("CR7CAD/RobertaFinetuned")
            except Exception as e:
                st.error(f"Error loading sentiment model: {e}")
                models['evaluator_model'] = models['evaluator_tokenizer'] = None
        
        return models

def summarize_text(text, models, max_length=100):
    """Summarize text using available models with fallbacks"""
    # Truncate input to prevent issues with long texts
    input_text = text[:1024]
    
    # Try pipeline first
    if has_pipeline and 'summarizer' in models:
        try:
            return models['summarizer'](input_text)[0]['summary_text']
        except Exception as e:
            st.warning(f"Error in pipeline summarization: {e}")
    
    # Try manual model
    if 'summarizer_model' in models and 'summarizer_tokenizer' in models and models['summarizer_model']:
        try:
            tokenizer = models['summarizer_tokenizer']
            model = models['summarizer_model']
            inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024)
            summary_ids = model.generate(inputs.input_ids, max_length=max_length, min_length=30, num_beams=4, early_stopping=True)
            return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
        except Exception as e:
            st.warning(f"Error in manual summarization: {e}")
    
    # Fallback to basic summarization
    return basic_summarize(text, max_length)

def basic_summarize(text, max_length=100):
    """Basic extractive text summarization"""
    sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
    
    # Score and filter sentences
    scored_sentences = []
    for i, sentence in enumerate(sentences):
        if len(sentence.split()) >= 4:
            score = 1.0 / (i + 1) - (0.01 * max(0, len(sentence.split()) - 20))
            scored_sentences.append((score, sentence))
    
    # Get top sentences
    scored_sentences.sort(reverse=True)
    summary_sentences = []
    current_length = 0
    
    for _, sentence in scored_sentences:
        if current_length + len(sentence.split()) <= max_length:
            summary_sentences.append(sentence)
            current_length += len(sentence.split())
        else:
            break
    
    # Restore original sentence order
    if summary_sentences:
        original_order = [(sentences.index(s), s) for s in summary_sentences]
        original_order.sort()
        summary_sentences = [s for _, s in original_order]
    
    return " ".join(summary_sentences)

#####################################
# Information Extraction Functions
#####################################
@st.cache_data(show_spinner=False)
def extract_text_from_file(file_obj):
    """Extract text from uploaded document file"""
    filename = file_obj.name
    ext = os.path.splitext(filename)[1].lower()
    
    if ext == ".docx":
        try:
            document = docx.Document(file_obj)
            text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
        except Exception as e:
            return f"Error processing DOCX file: {e}"
    elif ext == ".doc":
        try:
            with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
                temp_file.write(file_obj.getvalue())
                temp_path = temp_file.name
            
            text = docx2txt.process(temp_path)
            os.unlink(temp_path)
        except Exception as e:
            return f"Error processing DOC file: {e}"
    elif ext == ".txt":
        try:
            text = file_obj.getvalue().decode("utf-8")
        except Exception as e:
            return f"Error processing TXT file: {e}"
    else:
        return "Unsupported file type. Please upload a .docx, .doc, or .txt file."
    
    return text[:15000] if text else text

def extract_skills(text):
    """Extract key skills from the resume"""
    skill_keywords = {
        "Programming": ["Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "Go", "React", "Angular", "Vue", "Node.js"],
        "Data Science": ["Machine Learning", "Data Analysis", "Statistics", "TensorFlow", "PyTorch", "AI", "Algorithms", "NLP", "Deep Learning"],
        "Database": ["SQL", "MySQL", "MongoDB", "Database", "NoSQL", "PostgreSQL", "Oracle", "Redis"],
        "Web Development": ["React", "Angular", "Node.js", "Frontend", "Backend", "Full-Stack", "REST API", "GraphQL"],
        "Software Development": ["Agile", "Scrum", "Git", "DevOps", "Docker", "System Design", "CI/CD", "Jenkins"],
        "Cloud": ["AWS", "Azure", "Google Cloud", "Cloud Computing", "Lambda", "S3", "EC2"],
        "Security": ["Cybersecurity", "Network Security", "Encryption", "Security"],
        "Business": ["Project Management", "Business Analysis", "Leadership", "Teamwork", "Agile", "Scrum"],
        "Design": ["UX/UI", "User Experience", "Design Thinking", "Adobe", "Figma"]
    }
    
    text_lower = text.lower()
    return [skill for category, skills in skill_keywords.items() 
            for skill in skills if skill.lower() in text_lower]

@lru_cache(maxsize=32)
def extract_name(text_start):
    """Extract candidate name from the beginning of resume text"""
    lines = text_start.split('\n')
    potential_name_lines = [line.strip() for line in lines[:5] if line.strip()]
    
    if potential_name_lines:
        first_line = potential_name_lines[0]
        if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae", "profile"]):
            return first_line
    
    for line in potential_name_lines[:3]:
        if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
            return line

    return "Unknown (please extract from resume)"

def extract_age(text):
    """Extract candidate age from resume text"""
    age_patterns = [
        r'age:?\s*(\d{1,2})',
        r'(\d{1,2})\s*years\s*old',
        r'dob:.*(\d{4})',
        r'date of birth:.*(\d{4})'
    ]
    
    text_lower = text.lower()
    for pattern in age_patterns:
        matches = re.search(pattern, text_lower)
        if matches:
            # Convert birth year to age if needed
            if len(matches.group(1)) == 4:
                try:
                    return str(2025 - int(matches.group(1)))
                except:
                    pass
            return matches.group(1)
    
    return "Not specified"

def extract_industry(text):
    """Extract expected job industry from resume"""
    industry_keywords = {
        "Technology": ["software", "programming", "developer", "IT", "tech", "computer", "digital"],
        "Finance": ["banking", "financial", "accounting", "finance", "analyst"],
        "Healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor", "patient"],
        "Education": ["teaching", "teacher", "professor", "education", "university", "school", "academic"],
        "Marketing": ["marketing", "advertising", "digital marketing", "social media", "brand"],
        "Engineering": ["engineer", "engineering", "mechanical", "civil", "electrical"],
        "Data Science": ["data science", "machine learning", "AI", "analytics", "big data"],
        "Management": ["manager", "management", "leadership", "executive", "director"],
        "Consulting": ["consultant", "consulting", "advisor"],
        "Sales": ["sales", "business development", "account manager", "client relations"]
    }
    
    text_lower = text.lower()
    industry_counts = {industry: sum(text_lower.count(keyword.lower()) for keyword in keywords) 
                       for industry, keywords in industry_keywords.items()}
    
    return max(industry_counts.items(), key=lambda x: x[1])[0] if any(industry_counts.values()) else "Not clearly specified"

def extract_job_position(text):
    """Extract expected job position from resume"""
    objective_patterns = [
        r'objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
        r'career\s*objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
        r'professional\s*summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
        r'summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
        r'seeking\s*(?:a|an)?\s*(?:position|role|opportunity)\s*(?:as|in)?\s*(?:a|an)?\s*([^.]*)'
    ]
    
    text_lower = text.lower()
    for pattern in objective_patterns:
        match = re.search(pattern, text_lower, re.IGNORECASE | re.DOTALL)
        if match:
            objective_text = match.group(1).strip()
            job_titles = ["developer", "engineer", "analyst", "manager", "director", "specialist", 
                          "coordinator", "consultant", "designer", "architect", "administrator"]
            
            for title in job_titles:
                if title in objective_text:
                    title_pattern = r'(?:a|an)?\s*(\w+\s+' + title + r'|\w+\s+\w+\s+' + title + r')'
                    title_match = re.search(title_pattern, objective_text)
                    if title_match:
                        return title_match.group(1).strip().title()
                    return title.title()
            
            if len(objective_text) > 10:
                words = objective_text.split()
                return " ".join(words[:10]).title() + "..." if len(words) > 10 else objective_text.title()
    
    job_patterns = [
        r'experience:.*?(\w+\s+\w+(?:\s+\w+)?)(?=\s*at|\s*\(|\s*-|\s*,|\s*\d{4}|\n)',
        r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*current\s*\)',
        r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*present\s*\)'
    ]
    
    for pattern in job_patterns:
        match = re.search(pattern, text_lower, re.IGNORECASE)
        if match:
            return match.group(1).strip().title()
    
    return "Not explicitly stated"

#####################################
# Core Analysis Functions
#####################################
def summarize_resume_text(resume_text, models):
    """Generate a structured summary of resume text"""
    start_time = time.time()
    
    # Extract critical information
    name = extract_name(resume_text[:500])
    age = extract_age(resume_text)
    industry = extract_industry(resume_text)
    job_position = extract_job_position(resume_text)
    skills = extract_skills(resume_text)
    
    # Generate overall summary
    try:
        if has_pipeline and 'summarizer' in models:
            model_summary = models['summarizer'](resume_text[:2000], max_length=100, min_length=30, do_sample=False)[0]['summary_text']
        else:
            model_summary = summarize_text(resume_text, models, max_length=100)
    except Exception as e:
        st.warning(f"Error in resume summarization: {e}")
        model_summary = "Error generating summary. Please check the original resume."
    
    # Format the structured summary
    formatted_summary = f"Name: {name}\n\n"
    formatted_summary += f"Age: {age}\n\n"
    formatted_summary += f"Expected Industry: {industry}\n\n"
    formatted_summary += f"Expected Job Position: {job_position}\n\n"
    formatted_summary += f"Skills: {', '.join(skills)}\n\n"
    formatted_summary += f"Summary: {model_summary}"
    
    return formatted_summary, time.time() - start_time

def extract_job_requirements(job_description, models):
    """Extract key requirements from a job description"""
    # Combined skill list (abridged for brevity)
    tech_skills = [
        "Python", "Java", "C++", "JavaScript", "TypeScript", "SQL", "HTML", "CSS", "React", "Angular", 
        "Machine Learning", "Data Science", "AI", "AWS", "Azure", "Docker", "Kubernetes", "MySQL", 
        "MongoDB", "PostgreSQL", "Project Management", "Agile", "Scrum", "Leadership", "Communication",
        "Problem Solving", "Git", "DevOps", "Full Stack", "Mobile Development", "Android", "iOS"
    ]
    
    clean_job_text = job_description.lower()
    
    # Extract job title
    title_patterns = [
        r'^([^:.\n]+?)(position|role|job|opening|vacancy)',
        r'^([^:.\n]+?)\n',
        r'(hiring|looking for(?: a| an)?|recruiting)(?: a| an)? ([^:.\n]+?)(:-|[.:]|\n|$)'
    ]
    
    job_title = "Not specified"
    for pattern in title_patterns:
        title_match = re.search(pattern, clean_job_text, re.IGNORECASE)
        if title_match:
            potential_title = title_match.group(1).strip() if len(title_match.groups()) >= 1 else title_match.group(2).strip()
            if 3 <= len(potential_title) <= 50:
                job_title = potential_title.capitalize()
                break
    
    # Extract years of experience
    exp_patterns = [
        r'(\d+)(?:\+)?\s*(?:years|yrs)(?:\s*of)?\s*(?:experience|exp)',
        r'experience\s*(?:of)?\s*(\d+)(?:\+)?\s*(?:years|yrs)'
    ]
    
    years_required = 0
    for pattern in exp_patterns:
        exp_match = re.search(pattern, clean_job_text, re.IGNORECASE)
        if exp_match:
            try:
                years_required = int(exp_match.group(1))
                break
            except:
                pass
    
    # Extract required skills
    required_skills = [skill for skill in tech_skills if re.search(r'\b' + re.escape(skill.lower()) + r'\b', clean_job_text)]
    
    # Fallback if no skills found
    if not required_skills:
        words = re.findall(r'\b\w{4,}\b', clean_job_text)
        word_counts = {}
        for word in words:
            if word not in ["with", "that", "this", "have", "from", "they", "will", "what", "your", "their", "about"]:
                word_counts[word] = word_counts.get(word, 0) + 1
        sorted_words = sorted(word_counts.items(), key=lambda x: x[1], reverse=True)
        required_skills = [word.capitalize() for word, _ in sorted_words[:5]]
    
    job_summary = summarize_text(job_description, models, max_length=100)
    
    return {
        "title": job_title,
        "years_experience": years_required,
        "required_skills": required_skills,
        "summary": job_summary
    }

def evaluate_job_fit(resume_summary, job_requirements, models):
    """Evaluate how well a resume matches job requirements"""
    start_time = time.time()
    
    # Extract information
    required_skills = job_requirements["required_skills"]
    years_required = job_requirements["years_experience"]
    job_title = job_requirements["title"]
    skills_mentioned = extract_skills(resume_summary)
    
    # Calculate match percentages
    matching_skills = [skill for skill in required_skills if skill in skills_mentioned]
    skill_match_percentage = len(matching_skills) / len(required_skills) if required_skills else 0
    
    # Extract experience level from resume
    experience_pattern = r'(\d+)\+?\s*years?\s*(?:of)?\s*experience'
    years_experience = 0
    experience_match = re.search(experience_pattern, resume_summary, re.IGNORECASE)
    if experience_match:
        try:
            years_experience = int(experience_match.group(1))
        except:
            pass
    
    # Calculate match scores
    exp_match_ratio = min(1.0, years_experience / max(1, years_required)) if years_required > 0 else 0.5
    
    # Job title match score
    title_words = [word for word in job_title.lower().split() if len(word) > 3]
    title_matches = sum(1 for word in title_words if word in resume_summary.lower())
    title_match = title_matches / len(title_words) if title_words else 0
    
    # Calculate individual scores
    skill_score = min(2, skill_match_percentage * 3)
    exp_score = min(2, exp_match_ratio * 2)
    title_score = min(2, title_match * 2)
    
    # Extract candidate info
    name_match = re.search(r'Name:\s*(.*?)(?=\n|\Z)', resume_summary)
    name = name_match.group(1).strip() if name_match else "The candidate"
    
    industry_match = re.search(r'Expected Industry:\s*(.*?)(?=\n|\Z)', resume_summary)
    industry = industry_match.group(1).strip() if industry_match else "unspecified industry"
    
    # Calculate final weighted score
    weighted_score = (skill_score * 0.5) + (exp_score * 0.3) + (title_score * 0.2)
    
    # Determine fit score
    if weighted_score >= 1.5:
        fit_score = 2  # Good fit
    elif weighted_score >= 0.8:
        fit_score = 1  # Potential fit
    else:
        fit_score = 0  # Not a fit
    
    # Generate assessment text
    missing_skills = [skill for skill in required_skills if skill not in skills_mentioned]
    
    if fit_score == 2:
        fit_assessment = f"{fit_score}: GOOD FIT - {name} demonstrates strong alignment with the {job_title} position. Their background in {industry} and professional experience appear well-suited for this role's requirements. The technical expertise matches what the position demands."
    elif fit_score == 1:
        fit_assessment = f"{fit_score}: POTENTIAL FIT - {name} shows potential for the {job_title} role with some relevant experience, though there are gaps in certain technical areas. Their {industry} background provides partial alignment with the position requirements. Additional training might be needed in {', '.join(missing_skills[:2])} if pursuing this opportunity."
    else:
        fit_assessment = f"{fit_score}: NO FIT - {name}'s current background shows limited alignment with this {job_title} position. Their experience level and technical background differ significantly from the role requirements. A position better matching their {industry} expertise might be more suitable."
    
    return fit_assessment, fit_score, time.time() - start_time

def analyze_job_fit(resume_summary, job_description, models):
    """End-to-end job fit analysis"""
    start_time = time.time()
    job_requirements = extract_job_requirements(job_description, models)
    assessment, fit_score, execution_time = evaluate_job_fit(resume_summary, job_requirements, models)
    return assessment, fit_score, time.time() - start_time

#####################################
# Main Function
#####################################
def main():
    """Main function for the Streamlit application"""
    st.title("Resume-Job Fit Analyzer")
    st.markdown("Upload your resume file in **.docx**, **.doc**, or **.txt** format and enter a job description to see how well you match with the job requirements.")

    # Load models
    models = load_models()
    
    # User inputs
    uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"])
    job_description = st.text_area("Enter Job Description", height=200, placeholder="Paste the job description here...")

    # Process when button clicked
    if uploaded_file is not None and job_description and st.button("Analyze Job Fit"):
        progress_bar = st.progress(0)
        status_text = st.empty()
        
        # Step 1: Extract text
        status_text.text("Step 1/3: Extracting text from resume...")
        resume_text = extract_text_from_file(uploaded_file)
        progress_bar.progress(25)
        
        if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
            st.error(resume_text)
        else:
            # Step 2: Generate summary
            status_text.text("Step 2/3: Analyzing resume and generating summary...")
            summary, summarization_time = summarize_resume_text(resume_text, models)
            progress_bar.progress(50)
            
            # Display summary
            st.subheader("Your Resume Summary")
            st.markdown(summary)
            
            # Step 3: Generate job fit assessment
            status_text.text("Step 3/3: Evaluating job fit (this will take a moment)...")
            assessment, fit_score, assessment_time = analyze_job_fit(summary, job_description, models)
            progress_bar.progress(100)
            status_text.empty()

            # Display results
            st.subheader("Job Fit Assessment")
            
            # Display score with appropriate styling
            fit_labels = {0: "NOT FIT", 1: "POTENTIAL FIT", 2: "GOOD FIT"}
            score_colors = {0: "red", 1: "orange", 2: "green"}
            st.markdown(f"<h2 style='color: {score_colors[fit_score]};'>{fit_labels[fit_score]}</h2>", unsafe_allow_html=True)
            st.markdown(assessment)
            st.info(f"Analysis completed in {(summarization_time + assessment_time):.2f} seconds")
            
            # Recommendations
            st.subheader("Recommended Next Steps")
            
            if fit_score == 2:
                st.markdown("""
                - Apply for this position as you appear to be a good match
                - Prepare for interviews by focusing on your relevant experience
                - Highlight your matching skills in your cover letter
                """)
            elif fit_score == 1:
                st.markdown("""
                - Consider applying but address skill gaps in your cover letter
                - Emphasize transferable skills and relevant experience
                - Prepare to discuss how you can quickly develop missing skills
                """)
            else:
                st.markdown("""
                - Look for positions better aligned with your current skills
                - If interested in this field, focus on developing the required skills
                - Consider similar roles with fewer experience requirements
                """)

if __name__ == "__main__":
    main()