CR7CAD's picture
Update app.py
0af81d7 verified
raw
history blame
17.8 kB
import os, io, re, time, tempfile
import streamlit as st
import docx, docx2txt
import pandas as pd
from functools import lru_cache
# Handle imports
try:
from transformers import pipeline
has_pipeline = True
except ImportError:
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM
import torch
has_pipeline = False
# Setup page
st.set_page_config(page_title="Resume-Job Fit Analyzer", initial_sidebar_state="collapsed")
st.markdown("""<style>[data-testid="collapsedControl"],[data-testid="stSidebar"] {display: none;}</style>""", unsafe_allow_html=True)
#####################################
# Model Loading & Text Processing
#####################################
@st.cache_resource
def load_models():
with st.spinner("Loading AI models..."):
models = {}
# Load summarization model
if has_pipeline:
models['summarizer'] = pipeline("summarization", model="Falconsai/text_summarization", max_length=100)
else:
try:
models['summarizer_model'] = AutoModelForSeq2SeqLM.from_pretrained("Falconsai/text_summarization")
models['summarizer_tokenizer'] = AutoTokenizer.from_pretrained("Falconsai/text_summarization")
except Exception as e:
st.error(f"Error loading summarization model: {e}")
models['summarizer_model'] = models['summarizer_tokenizer'] = None
# Load evaluation model
if has_pipeline:
models['evaluator'] = pipeline("sentiment-analysis", model="CR7CAD/RobertaFinetuned")
else:
try:
models['evaluator_model'] = AutoModelForSequenceClassification.from_pretrained("CR7CAD/RobertaFinetuned")
models['evaluator_tokenizer'] = AutoTokenizer.from_pretrained("CR7CAD/RobertaFinetuned")
except Exception as e:
st.error(f"Error loading sentiment model: {e}")
models['evaluator_model'] = models['evaluator_tokenizer'] = None
return models
def summarize_text(text, models, max_length=100):
"""Summarize text with fallbacks"""
input_text = text[:1024]
# Try pipeline
if has_pipeline and 'summarizer' in models:
try:
return models['summarizer'](input_text)[0]['summary_text']
except: pass
# Try manual model
if 'summarizer_model' in models and models['summarizer_model']:
try:
tokenizer = models['summarizer_tokenizer']
model = models['summarizer_model']
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024)
summary_ids = model.generate(inputs.input_ids, max_length=max_length, min_length=30, num_beams=4)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
except: pass
# Fallback - extract sentences
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
scored = [(1.0/(i+1), s) for i, s in enumerate(sentences) if len(s.split()) >= 4]
scored.sort(reverse=True)
result, length = [], 0
for _, sentence in scored:
if length + len(sentence.split()) <= max_length:
result.append(sentence)
length += len(sentence.split())
if result:
ordered = sorted([(sentences.index(s), s) for s in result])
return " ".join(s for _, s in ordered)
return ""
#####################################
# File Processing & Information Extraction
#####################################
@st.cache_data
def extract_text_from_file(file_obj):
ext = os.path.splitext(file_obj.name)[1].lower()
if ext == ".docx":
try:
document = docx.Document(file_obj)
return "\n".join(para.text for para in document.paragraphs if para.text.strip())[:15000]
except Exception as e:
return f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
temp_file.write(file_obj.getvalue())
text = docx2txt.process(temp_file.name)
os.unlink(temp_file.name)
return text[:15000]
except Exception as e:
return f"Error processing DOC file: {e}"
elif ext == ".txt":
try:
return file_obj.getvalue().decode("utf-8")[:15000]
except Exception as e:
return f"Error processing TXT file: {e}"
else:
return "Unsupported file type. Please upload a .docx, .doc, or .txt file."
# Information extraction functions
def extract_skills(text):
"""Extract skills from text"""
skill_keywords = {
"Programming": ["Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "React", "Angular"],
"Data Science": ["Machine Learning", "Data Analysis", "Statistics", "TensorFlow", "PyTorch", "AI", "NLP"],
"Database": ["SQL", "MySQL", "MongoDB", "PostgreSQL", "Oracle", "Redis"],
"Web Dev": ["React", "Angular", "Node.js", "Frontend", "Backend", "Full-Stack", "REST API"],
"Software Dev": ["Agile", "Scrum", "Git", "DevOps", "Docker", "CI/CD", "Jenkins"],
"Cloud": ["AWS", "Azure", "Google Cloud", "Lambda", "S3", "EC2"],
"Business": ["Project Management", "Leadership", "Teamwork", "Agile", "Scrum"]
}
text_lower = text.lower()
return [skill for _, skills in skill_keywords.items() for skill in skills if skill.lower() in text_lower]
@lru_cache(maxsize=32)
def extract_name(text_start):
lines = [line.strip() for line in text_start.split('\n')[:5] if line.strip()]
if lines:
first_line = lines[0]
if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae"]):
return first_line
for line in lines[:3]:
if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
return line
return "Unknown"
def extract_age(text):
for pattern in [r'age:?\s*(\d{1,2})', r'(\d{1,2})\s*years\s*old', r'dob:.*(\d{4})', r'date of birth:.*(\d{4})']:
match = re.search(pattern, text.lower())
if match:
if len(match.group(1)) == 4: # Birth year
try: return str(2025 - int(match.group(1)))
except: pass
return match.group(1)
return "Not specified"
def extract_industry(text):
industries = {
"Technology": ["software", "programming", "developer", "IT", "tech", "computer", "digital"],
"Finance": ["banking", "financial", "accounting", "finance", "analyst"],
"Healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor"],
"Education": ["teaching", "teacher", "professor", "education", "university", "school"],
"Marketing": ["marketing", "advertising", "digital marketing", "social media", "brand"],
"Engineering": ["engineer", "engineering", "mechanical", "civil", "electrical"],
"Data Science": ["data science", "machine learning", "AI", "analytics", "big data"],
"Management": ["manager", "management", "leadership", "executive", "director"]
}
text_lower = text.lower()
counts = {ind: sum(text_lower.count(kw) for kw in kws) for ind, kws in industries.items()}
return max(counts.items(), key=lambda x: x[1])[0] if any(counts.values()) else "Not specified"
def extract_job_position(text):
text_lower = text.lower()
for pattern in [r'objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', r'career\s*objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
r'summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', r'seeking.*position.*as\s*([^.]*)']:
match = re.search(pattern, text_lower, re.IGNORECASE | re.DOTALL)
if match:
text = match.group(1).strip()
for title in ["developer", "engineer", "analyst", "manager", "specialist", "designer"]:
if title in text:
return next((m.group(1).strip().title() for m in
[re.search(r'(\w+\s+' + title + r')', text)] if m), title.title())
return " ".join(text.split()[:10]).title() + "..." if len(text.split()) > 10 else text.title()
# Check for job title near experience
for pattern in [r'experience:.*?(\w+\s+\w+(?:\s+\w+)?)(?=\s*at|\s*\()', r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*(?:current|present)']:
match = re.search(pattern, text_lower, re.IGNORECASE)
if match: return match.group(1).strip().title()
return "Not specified"
#####################################
# Core Analysis Functions
#####################################
def summarize_resume_text(resume_text, models):
start = time.time()
# Basic info extraction
name = extract_name(resume_text[:500])
age = extract_age(resume_text)
industry = extract_industry(resume_text)
job_position = extract_job_position(resume_text)
skills = extract_skills(resume_text)
# Generate summary
try:
if has_pipeline and 'summarizer' in models:
model_summary = models['summarizer'](resume_text[:2000], max_length=100, min_length=30)[0]['summary_text']
else:
model_summary = summarize_text(resume_text, models, max_length=100)
except:
model_summary = "Error generating summary."
# Format result
summary = f"Name: {name}\n\nAge: {age}\n\nExpected Industry: {industry}\n\n"
summary += f"Expected Job Position: {job_position}\n\nSkills: {', '.join(skills)}\n\nSummary: {model_summary}"
return summary, time.time() - start
def extract_job_requirements(job_description, models):
tech_skills = [
"Python", "Java", "JavaScript", "SQL", "HTML", "CSS", "React", "Angular", "Machine Learning", "AWS",
"Azure", "Docker", "MySQL", "MongoDB", "Project Management", "Agile", "Leadership", "Git", "DevOps"
]
clean_text = job_description.lower()
# Extract job title
job_title = "Not specified"
for pattern in [r'^([^:.\n]+?)(position|role|job)', r'^([^:.\n]+?)\n', r'hiring.*? ([^:.\n]+?)(:-|[.:]|\n|$)']:
match = re.search(pattern, clean_text, re.IGNORECASE)
if match:
title = match.group(1).strip() if len(match.groups()) >= 1 else match.group(2).strip()
if 3 <= len(title) <= 50:
job_title = title.capitalize()
break
# Extract years required
years_required = 0
for pattern in [r'(\d+)(?:\+)?\s*(?:years|yrs).*?experience', r'experience.*?(\d+)(?:\+)?\s*(?:years|yrs)']:
match = re.search(pattern, clean_text, re.IGNORECASE)
if match:
try:
years_required = int(match.group(1))
break
except: pass
# Extract skills
required_skills = [skill for skill in tech_skills if re.search(r'\b' + re.escape(skill.lower()) + r'\b', clean_text)]
# Fallback if no skills found
if not required_skills:
words = [w for w in re.findall(r'\b\w{4,}\b', clean_text)
if w not in ["with", "that", "this", "have", "from", "they", "will", "what", "your"]]
word_counts = {}
for w in words: word_counts[w] = word_counts.get(w, 0) + 1
required_skills = [w.capitalize() for w, _ in sorted(word_counts.items(), key=lambda x: x[1], reverse=True)[:5]]
return {
"title": job_title,
"years_experience": years_required,
"required_skills": required_skills,
"summary": summarize_text(job_description, models, max_length=100)
}
def evaluate_job_fit(resume_summary, job_requirements, models):
start = time.time()
# Basic extraction
required_skills = job_requirements["required_skills"]
years_required = job_requirements["years_experience"]
job_title = job_requirements["title"]
skills_mentioned = extract_skills(resume_summary)
# Calculate matches
matching_skills = [skill for skill in required_skills if skill in skills_mentioned]
skill_match = len(matching_skills) / len(required_skills) if required_skills else 0
# Extract experience
years_experience = 0
exp_match = re.search(r'(\d+)\+?\s*years?\s*(?:of)?\s*experience', resume_summary, re.IGNORECASE)
if exp_match:
try: years_experience = int(exp_match.group(1))
except: pass
# Calculate scores
exp_match_ratio = min(1.0, years_experience / max(1, years_required)) if years_required > 0 else 0.5
title_words = [w for w in job_title.lower().split() if len(w) > 3]
title_match = sum(1 for w in title_words if w in resume_summary.lower()) / len(title_words) if title_words else 0
# Final scores
skill_score = min(2, skill_match * 3)
exp_score = min(2, exp_match_ratio * 2)
title_score = min(2, title_match * 2)
# Extract candidate info
name = re.search(r'Name:\s*(.*?)(?=\n|\Z)', resume_summary)
name = name.group(1).strip() if name else "The candidate"
industry = re.search(r'Expected Industry:\s*(.*?)(?=\n|\Z)', resume_summary)
industry = industry.group(1).strip() if industry else "unspecified industry"
# Calculate weighted score
weighted_score = (skill_score * 0.5) + (exp_score * 0.3) + (title_score * 0.2)
fit_score = 2 if weighted_score >= 1.5 else (1 if weighted_score >= 0.8 else 0)
# Generate assessment
missing = [skill for skill in required_skills if skill not in skills_mentioned]
if fit_score == 2:
assessment = f"{fit_score}: GOOD FIT - {name} demonstrates strong alignment with the {job_title} position. Their background in {industry} appears well-suited for this role's requirements."
elif fit_score == 1:
assessment = f"{fit_score}: POTENTIAL FIT - {name} shows potential for the {job_title} role but has gaps in certain areas. Additional training might be needed in {', '.join(missing[:2])}."
else:
assessment = f"{fit_score}: NO FIT - {name}'s background shows limited alignment with this {job_title} position. Their experience and skills differ significantly from the requirements."
return assessment, fit_score, time.time() - start
def analyze_job_fit(resume_summary, job_description, models):
start = time.time()
job_requirements = extract_job_requirements(job_description, models)
assessment, fit_score, _ = evaluate_job_fit(resume_summary, job_requirements, models)
return assessment, fit_score, time.time() - start
#####################################
# Main Function
#####################################
def main():
st.title("Resume-Job Fit Analyzer")
st.markdown("Upload your resume file in **.docx**, **.doc**, or **.txt** format and enter a job description to see how well you match.")
# Load models and get inputs
models = load_models()
uploaded_file = st.file_uploader("Upload your resume", type=["docx", "doc", "txt"])
job_description = st.text_area("Enter Job Description", height=200, placeholder="Paste the job description here...")
# Process when button clicked
if uploaded_file and job_description and st.button("Analyze Job Fit"):
progress = st.progress(0)
status = st.empty()
# Step 1: Extract text
status.text("Step 1/3: Extracting text from resume...")
resume_text = extract_text_from_file(uploaded_file)
progress.progress(25)
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
st.error(resume_text)
else:
# Step 2: Generate summary
status.text("Step 2/3: Analyzing resume...")
summary, summary_time = summarize_resume_text(resume_text, models)
progress.progress(50)
st.subheader("Your Resume Summary")
st.markdown(summary)
# Step 3: Evaluate fit
status.text("Step 3/3: Evaluating job fit...")
assessment, fit_score, eval_time = analyze_job_fit(summary, job_description, models)
progress.progress(100)
status.empty()
# Display results
st.subheader("Job Fit Assessment")
fit_labels = {0: "NOT FIT", 1: "POTENTIAL FIT", 2: "GOOD FIT"}
colors = {0: "red", 1: "orange", 2: "green"}
st.markdown(f"<h2 style='color: {colors[fit_score]};'>{fit_labels[fit_score]}</h2>", unsafe_allow_html=True)
st.markdown(assessment)
st.info(f"Analysis completed in {(summary_time + eval_time):.2f} seconds")
# Recommendations
st.subheader("Recommended Next Steps")
if fit_score == 2:
st.markdown("""
- Apply for this position as you appear to be a good match
- Prepare for interviews by focusing on your relevant experience
- Highlight your matching skills in your cover letter
""")
elif fit_score == 1:
st.markdown("""
- Consider applying but address skill gaps in your cover letter
- Emphasize transferable skills and relevant experience
- Prepare to discuss how you can quickly develop missing skills
""")
else:
st.markdown("""
- Look for positions better aligned with your current skills
- If interested in this field, focus on developing the required skills
- Consider similar roles with fewer experience requirements
""")
if __name__ == "__main__":
main()