Spaces:
Sleeping
Sleeping
import os | |
import tempfile | |
import re | |
import time | |
import streamlit as st | |
import docx | |
import textract | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import pipeline | |
##################################### | |
# Function: Extract Text from File | |
##################################### | |
def extract_text_from_file(file_obj): | |
""" | |
Extract text from .doc and .docx files. | |
Returns the extracted text or an error message if extraction fails. | |
""" | |
filename = file_obj.name | |
ext = os.path.splitext(filename)[1].lower() | |
text = "" | |
if ext == ".docx": | |
try: | |
document = docx.Document(file_obj) | |
text = "\n".join([para.text for para in document.paragraphs]) | |
except Exception as e: | |
text = f"Error processing DOCX file: {e}" | |
elif ext == ".doc": | |
try: | |
# textract requires a file name; save the file temporarily. | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp: | |
tmp.write(file_obj.read()) | |
tmp.flush() | |
tmp_filename = tmp.name | |
text = textract.process(tmp_filename).decode("utf-8") | |
except Exception as e: | |
text = f"Error processing DOC file: {e}" | |
finally: | |
try: | |
os.remove(tmp_filename) | |
except Exception: | |
pass | |
else: | |
text = "Unsupported file type." | |
return text | |
##################################### | |
# Function: Summarize Resume Text using a Transformer Model | |
##################################### | |
def load_summarizer(): | |
""" | |
Loads the summarization pipeline using a transformer model. | |
We use the model "google/pegasus-xsum" for summarization. | |
""" | |
return pipeline("summarization", model="google/pegasus-xsum") | |
def summarize_resume_text(resume_text): | |
""" | |
Generates a concise summary of the resume text using the summarization model. | |
If the resume text is very long, we trim it to avoid hitting the model's maximum input size. | |
""" | |
summarizer = load_summarizer() | |
# Trim resume_text if it's too long | |
max_input_length = 1024 # adjust as needed | |
if len(resume_text) > max_input_length: | |
st.info(f"Resume text is longer than {max_input_length} characters. Trimming text for summarization...") | |
resume_text = resume_text[:max_input_length] | |
# Generate summary | |
summary_result = summarizer(resume_text, max_length=150, min_length=40, do_sample=False) | |
candidate_summary = summary_result[0]['summary_text'] | |
return candidate_summary | |
##################################### | |
# Function: Compare Candidate Summary to Company Prompt | |
##################################### | |
def compute_suitability(candidate_summary, company_prompt, model): | |
""" | |
Compute the cosine similarity between candidate summary and company prompt embeddings. | |
Returns a score in the range [0, 1]. | |
""" | |
candidate_embed = model.encode(candidate_summary, convert_to_tensor=True) | |
company_embed = model.encode(company_prompt, convert_to_tensor=True) | |
cosine_sim = util.cos_sim(candidate_embed, company_embed) | |
score = float(cosine_sim.item()) | |
return score | |
##################################### | |
# Main Resume Processing Logic | |
##################################### | |
def process_resume(file_obj): | |
""" | |
Extracts text from the uploaded file and then generates a summary | |
using a text summarization model. | |
""" | |
st.info("Extracting text from resume...") | |
resume_text = extract_text_from_file(file_obj) | |
# Check if resume_text is valid | |
if not resume_text or resume_text.strip() == "": | |
st.error("No text could be extracted. Please check your resume file!") | |
return "" | |
st.info(f"Text extraction complete. Extracted {len(resume_text)} characters.") | |
time.sleep(0.5) # slight delay to let the user read the info message | |
st.info("Generating candidate summary, please wait...") | |
candidate_summary = summarize_resume_text(resume_text) | |
st.info("Candidate summary generated.") | |
return candidate_summary | |
##################################### | |
# Load the Sentence-BERT Model (Semantic Similarity Model) | |
##################################### | |
def load_sbert_model(): | |
# This loads the Sentence-BERT model "all-MiniLM-L6-v2" | |
return SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
# Load Sentence-BERT model for computing semantic similarity. | |
sbert_model = load_sbert_model() | |
##################################### | |
# Streamlit Interface | |
##################################### | |
st.title("Resume Analyzer and Company Suitability Checker") | |
st.markdown( | |
""" | |
Upload your resume file in **.doc** or **.docx** format. The app performs the following tasks: | |
1. Extracts text from the resume. | |
2. Uses a transformer-based text summarization model (**google/pegasus-xsum**) to generate a concise candidate summary. | |
3. Compares the candidate summary with a company profile (using Sentence-BERT) to produce a suitability score. | |
""" | |
) | |
# File uploader for resume | |
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"]) | |
# Button to process the resume and store the summary in session state. | |
if st.button("Process Resume"): | |
if uploaded_file is None: | |
st.error("Please upload a resume file first.") | |
else: | |
with st.spinner("Processing resume..."): | |
candidate_summary = process_resume(uploaded_file) | |
if candidate_summary: # only if summary is generated | |
st.session_state["candidate_summary"] = candidate_summary | |
if candidate_summary: | |
st.subheader("Candidate Summary") | |
st.markdown(candidate_summary) | |
# Pre-defined company prompt for Google LLC. | |
default_company_prompt = ( | |
"Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, " | |
"artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong " | |
"problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming " | |
"languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. " | |
"Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture " | |
"of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology." | |
) | |
# Company prompt text area. | |
company_prompt = st.text_area( | |
"Enter company details:", | |
value=default_company_prompt, | |
height=150, | |
) | |
# Button to compute the suitability score. | |
if st.button("Compute Suitability Score"): | |
if "candidate_summary" not in st.session_state: | |
st.error("Please process the resume first!") | |
else: | |
candidate_summary = st.session_state["candidate_summary"] | |
if candidate_summary.strip() == "": | |
st.error("Candidate summary is empty; please check your resume file.") | |
elif company_prompt.strip() == "": | |
st.error("Please enter the company information.") | |
else: | |
with st.spinner("Computing suitability score..."): | |
score = compute_suitability(candidate_summary, company_prompt, sbert_model) | |
st.success(f"Suitability Score: {score:.2f} (range 0 to 1)") |