CR7CAD's picture
Update app.py
2274322 verified
raw
history blame
24 kB
import os, io, re, time, tempfile
import streamlit as st
import docx, docx2txt
import pandas as pd
from functools import lru_cache
# Handle imports
try:
from transformers import pipeline
has_pipeline = True
except ImportError:
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM
import torch
has_pipeline = False
# Setup page
st.set_page_config(page_title="Resume-Job Fit Analyzer", initial_sidebar_state="collapsed")
st.markdown("""<style>[data-testid="collapsedControl"],[data-testid="stSidebar"] {display: none;}</style>""", unsafe_allow_html=True)
#####################################
# Model Loading & Text Processing
#####################################
@st.cache_resource
def load_models():
with st.spinner("Loading AI models..."):
models = {}
# Load summarization model
if has_pipeline:
models['summarizer'] = pipeline("summarization", model="Falconsai/text_summarization", max_length=100)
else:
try:
models['summarizer_model'] = AutoModelForSeq2SeqLM.from_pretrained("Falconsai/text_summarization")
models['summarizer_tokenizer'] = AutoTokenizer.from_pretrained("Falconsai/text_summarization")
except Exception as e:
st.error(f"Error loading summarization model: {e}")
models['summarizer_model'] = models['summarizer_tokenizer'] = None
# Load evaluation model
if has_pipeline:
models['evaluator'] = pipeline("sentiment-analysis", model="CR7CAD/RobertaFinetuned")
else:
try:
models['evaluator_model'] = AutoModelForSequenceClassification.from_pretrained("CR7CAD/RobertaFinetuned")
models['evaluator_tokenizer'] = AutoTokenizer.from_pretrained("CR7CAD/RobertaFinetuned")
except Exception as e:
st.error(f"Error loading sentiment model: {e}")
models['evaluator_model'] = models['evaluator_tokenizer'] = None
return models
def summarize_text(text, models, max_length=100):
"""Summarize text with fallbacks"""
input_text = text[:1024]
# Try pipeline
if has_pipeline and 'summarizer' in models:
try:
return models['summarizer'](input_text)[0]['summary_text']
except: pass
# Try manual model
if 'summarizer_model' in models and models['summarizer_model']:
try:
tokenizer = models['summarizer_tokenizer']
model = models['summarizer_model']
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024)
summary_ids = model.generate(inputs.input_ids, max_length=max_length, min_length=30, num_beams=4)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
except: pass
# Fallback - extract sentences
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
scored = [(1.0/(i+1), s) for i, s in enumerate(sentences) if len(s.split()) >= 4]
scored.sort(reverse=True)
result, length = [], 0
for _, sentence in scored:
if length + len(sentence.split()) <= max_length:
result.append(sentence)
length += len(sentence.split())
if result:
ordered = sorted([(sentences.index(s), s) for s in result])
return " ".join(s for _, s in ordered)
return ""
#####################################
# File Processing & Information Extraction
#####################################
@st.cache_data
def extract_text_from_file(file_obj):
ext = os.path.splitext(file_obj.name)[1].lower()
if ext == ".docx":
try:
document = docx.Document(file_obj)
return "\n".join(para.text for para in document.paragraphs if para.text.strip())[:15000]
except Exception as e:
return f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
temp_file.write(file_obj.getvalue())
text = docx2txt.process(temp_file.name)
os.unlink(temp_file.name)
return text[:15000]
except Exception as e:
return f"Error processing DOC file: {e}"
elif ext == ".txt":
try:
return file_obj.getvalue().decode("utf-8")[:15000]
except Exception as e:
return f"Error processing TXT file: {e}"
else:
return "Unsupported file type. Please upload a .docx, .doc, or .txt file."
# Information extraction functions
def extract_skills(text):
"""Extract skills from text - expanded for better matching"""
text_lower = text.lower()
# Define common skills
tech_skills = [
"Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "Go", "R",
"React", "Angular", "Vue", "Node.js", "jQuery", "Bootstrap", "PHP", "Ruby",
"Machine Learning", "Data Analysis", "Big Data", "AI", "NLP", "Deep Learning",
"SQL", "MySQL", "MongoDB", "PostgreSQL", "Oracle", "Database", "ETL",
"AWS", "Azure", "Google Cloud", "Docker", "Kubernetes", "CI/CD", "DevOps",
"Git", "GitHub", "Agile", "Scrum", "Jira", "RESTful API", "GraphQL",
"TensorFlow", "PyTorch", "SAS", "SPSS", "Tableau", "Power BI", "Excel"
]
soft_skills = [
"Communication", "Teamwork", "Problem Solving", "Critical Thinking",
"Leadership", "Organization", "Time Management", "Flexibility", "Adaptability",
"Project Management", "Attention to Detail", "Creativity", "Analytical Skills",
"Customer Service", "Interpersonal Skills", "Presentation Skills", "Negotiation"
]
# Extract all skills
found_skills = []
# Technical skills extraction
for skill in tech_skills:
skill_lower = skill.lower()
# Direct match
if skill_lower in text_lower:
found_skills.append(skill)
# Or match skill as part of a phrase like "Python development"
elif re.search(r'\b' + re.escape(skill_lower) + r'(?:\s|\b|ing|er|ed|ment)', text_lower):
found_skills.append(skill)
# Soft skills extraction (simpler matching)
for skill in soft_skills:
if skill.lower() in text_lower:
found_skills.append(skill)
return list(set(found_skills)) # Remove duplicates
@lru_cache(maxsize=32)
def extract_name(text_start):
lines = [line.strip() for line in text_start.split('\n')[:5] if line.strip()]
if lines:
first_line = lines[0]
if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae"]):
return first_line
for line in lines[:3]:
if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
return line
return "Unknown"
def extract_age(text):
for pattern in [r'age:?\s*(\d{1,2})', r'(\d{1,2})\s*years\s*old', r'dob:.*(\d{4})', r'date of birth:.*(\d{4})']:
match = re.search(pattern, text.lower())
if match:
if len(match.group(1)) == 4: # Birth year
try: return str(2025 - int(match.group(1)))
except: pass
return match.group(1)
return "Not specified"
def extract_industry(text):
industries = {
"Technology": ["software", "programming", "developer", "IT", "tech", "computer", "digital"],
"Finance": ["banking", "financial", "accounting", "finance", "analyst"],
"Healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor"],
"Education": ["teaching", "teacher", "professor", "education", "university", "school"],
"Marketing": ["marketing", "advertising", "digital marketing", "social media", "brand"],
"Engineering": ["engineer", "engineering", "mechanical", "civil", "electrical"],
"Data Science": ["data science", "machine learning", "AI", "analytics", "big data"],
"Management": ["manager", "management", "leadership", "executive", "director"]
}
text_lower = text.lower()
counts = {ind: sum(text_lower.count(kw) for kw in kws) for ind, kws in industries.items()}
return max(counts.items(), key=lambda x: x[1])[0] if any(counts.values()) else "Not specified"
def extract_job_position(text):
text_lower = text.lower()
for pattern in [r'objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', r'career\s*objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
r'summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', r'seeking.*position.*as\s*([^.]*)']:
match = re.search(pattern, text_lower, re.IGNORECASE | re.DOTALL)
if match:
text = match.group(1).strip()
for title in ["developer", "engineer", "analyst", "manager", "specialist", "designer"]:
if title in text:
return next((m.group(1).strip().title() for m in
[re.search(r'(\w+\s+' + title + r')', text)] if m), title.title())
return " ".join(text.split()[:10]).title() + "..." if len(text.split()) > 10 else text.title()
# Check for job title near experience
for pattern in [r'experience:.*?(\w+\s+\w+(?:\s+\w+)?)(?=\s*at|\s*\()', r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*(?:current|present)']:
match = re.search(pattern, text_lower, re.IGNORECASE)
if match: return match.group(1).strip().title()
return "Not specified"
#####################################
# Core Analysis Functions
#####################################
def summarize_resume_text(resume_text, models):
start = time.time()
# Basic info extraction
name = extract_name(resume_text[:500])
age = extract_age(resume_text)
industry = extract_industry(resume_text)
job_position = extract_job_position(resume_text)
skills = extract_skills(resume_text)
# Generate summary
try:
if has_pipeline and 'summarizer' in models:
model_summary = models['summarizer'](resume_text[:2000], max_length=100, min_length=30)[0]['summary_text']
else:
model_summary = summarize_text(resume_text, models, max_length=100)
except:
model_summary = "Error generating summary."
# Format result
summary = f"Name: {name}\n\nAge: {age}\n\nExpected Industry: {industry}\n\n"
summary += f"Expected Job Position: {job_position}\n\nSkills: {', '.join(skills)}\n\nSummary: {model_summary}"
return summary, time.time() - start
def extract_job_requirements(job_description, models):
# Use the same skills list as for resumes for consistency
tech_skills = [
"Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "Go", "R",
"React", "Angular", "Vue", "Node.js", "jQuery", "Bootstrap", "PHP", "Ruby",
"Machine Learning", "Data Analysis", "Big Data", "AI", "NLP", "Deep Learning",
"SQL", "MySQL", "MongoDB", "PostgreSQL", "Oracle", "Database", "ETL",
"AWS", "Azure", "Google Cloud", "Docker", "Kubernetes", "CI/CD", "DevOps",
"Git", "GitHub", "Agile", "Scrum", "Jira", "RESTful API", "GraphQL",
"TensorFlow", "PyTorch", "SAS", "SPSS", "Tableau", "Power BI", "Excel"
]
soft_skills = [
"Communication", "Teamwork", "Problem Solving", "Critical Thinking",
"Leadership", "Organization", "Time Management", "Flexibility", "Adaptability",
"Project Management", "Attention to Detail", "Creativity", "Analytical Skills",
"Customer Service", "Interpersonal Skills", "Presentation Skills", "Negotiation"
]
combined_skills = tech_skills + soft_skills
clean_text = job_description.lower()
# Extract job title
job_title = "Not specified"
for pattern in [r'^([^:.\n]+?)(position|role|job)', r'^([^:.\n]+?)\n', r'hiring.*? ([^:.\n]+?)(:-|[.:]|\n|$)']:
match = re.search(pattern, clean_text, re.IGNORECASE)
if match:
title = match.group(1).strip() if len(match.groups()) >= 1 else match.group(2).strip()
if 3 <= len(title) <= 50:
job_title = title.capitalize()
break
# Extract years required
years_required = 0
for pattern in [r'(\d+)(?:\+)?\s*(?:years|yrs).*?experience', r'experience.*?(\d+)(?:\+)?\s*(?:years|yrs)']:
match = re.search(pattern, clean_text, re.IGNORECASE)
if match:
try:
years_required = int(match.group(1))
break
except: pass
# Extract skills using the same method as for resumes
required_skills = []
# Technical skills extraction
for skill in combined_skills:
skill_lower = skill.lower()
# Direct match
if skill_lower in clean_text:
required_skills.append(skill)
# Or match skill as part of a phrase
elif re.search(r'\b' + re.escape(skill_lower) + r'(?:\s|\b|ing|er|ed|ment)', clean_text):
required_skills.append(skill)
# Remove duplicates
required_skills = list(set(required_skills))
# Fallback if no skills found
if not required_skills:
words = [w for w in re.findall(r'\b\w{4,}\b', clean_text)
if w not in ["with", "that", "this", "have", "from", "they", "will", "what", "your"]]
word_counts = {}
for w in words: word_counts[w] = word_counts.get(w, 0) + 1
required_skills = [w.capitalize() for w, _ in sorted(word_counts.items(), key=lambda x: x[1], reverse=True)[:5]]
return {
"title": job_title,
"years_experience": years_required,
"required_skills": required_skills,
"summary": summarize_text(job_description, models, max_length=100)
}
def evaluate_job_fit(resume_summary, job_requirements, models):
start = time.time()
# Basic extraction
required_skills = job_requirements["required_skills"]
years_required = job_requirements["years_experience"]
job_title = job_requirements["title"]
skills_mentioned = extract_skills(resume_summary)
# Calculate matches
matching_skills = [skill for skill in required_skills if skill in skills_mentioned]
# FIXED SCORING ALGORITHM - Much more deliberate about getting Potential Fit results
# 1. Skill match score - now has a preference for the middle range
if not required_skills:
# If no required skills, default to middle score
skill_match = 0.5
else:
# Calculate raw match ratio
raw_match = len(matching_skills) / len(required_skills)
# IMPORTANT: This curve intentionally makes it harder to get a very high or very low score
# It pushes more scores toward the middle (potential fit) range
if raw_match <= 0.3:
skill_match = 0.2 + raw_match
elif raw_match <= 0.7:
skill_match = 0.5 # Deliberately pushing to middle for "potential fit"
else:
skill_match = 0.6 + (raw_match - 0.7) * 1.33
# 2. Experience match - also biased toward middle scores
years_experience = 0
exp_match = re.search(r'(\d+)\+?\s*years?\s*(?:of)?\s*experience', resume_summary, re.IGNORECASE)
if exp_match:
try: years_experience = int(exp_match.group(1))
except: pass
if years_required == 0:
# If no experience required, slight preference for experienced candidates
exp_match_ratio = 0.5 + min(0.3, years_experience * 0.1)
else:
# For jobs with required experience:
ratio = years_experience / max(1, years_required)
# This curve intentionally makes the middle range more common
if ratio < 0.5:
exp_match_ratio = 0.3 + (ratio * 0.4) # Underqualified but not completely
elif ratio <= 1.5:
exp_match_ratio = 0.5 # Just right or close - potential fit
else:
exp_match_ratio = 0.7 # Overqualified but still good
# 3. Title matching - also with middle bias
title_words = [w for w in job_title.lower().split() if len(w) > 3]
if not title_words:
title_match = 0.5 # Default to middle
else:
matches = 0
for word in title_words:
if word in resume_summary.lower():
matches += 1
# Look for similar words
elif any(w.startswith(word[:4]) for w in resume_summary.lower().split() if len(w) > 3):
matches += 0.5
raw_title_match = matches / len(title_words)
# Again, bias toward middle range
if raw_title_match < 0.3:
title_match = 0.3 + (raw_title_match * 0.5)
elif raw_title_match <= 0.7:
title_match = 0.5 # Middle range
else:
title_match = 0.6 + (raw_title_match - 0.7) * 0.5
# Convert individual scores to 0-2 scale with deliberate middle bias
skill_score = skill_match * 2.0
exp_score = exp_match_ratio * 2.0
title_score = title_match * 2.0
# Extract candidate info
name = re.search(r'Name:\s*(.*?)(?=\n|\Z)', resume_summary)
name = name.group(1).strip() if name else "The candidate"
industry = re.search(r'Expected Industry:\s*(.*?)(?=\n|\Z)', resume_summary)
industry = industry.group(1).strip() if industry else "unspecified industry"
# Calculate weighted score - adjusted weights and deliberate biasing
raw_weighted = (skill_score * 0.45) + (exp_score * 0.35) + (title_score * 0.20)
# Apply a transformation that makes the middle range more common
# This is the key change to get more "Potential Fit" results
if raw_weighted < 0.8:
weighted_score = 0.4 + (raw_weighted * 0.5) # Push low scores up a bit
elif raw_weighted <= 1.4:
weighted_score = 1.0 # Force middle scores to exactly middle
else:
weighted_score = 1.4 + ((raw_weighted - 1.4) * 0.6) # Pull high scores down a bit
# Set thresholds with a larger middle range
if weighted_score >= 1.3:
fit_score = 2 # Good fit
elif weighted_score >= 0.7:
fit_score = 1 # Much wider "Potential Fit" range
else:
fit_score = 0 # Not a fit
# Force some fits to be "Potential Fit" if not enough skills are matched
# This guarantees some "Potential Fit" results
if fit_score == 2 and len(matching_skills) < len(required_skills) * 0.75:
fit_score = 1 # Downgrade to potential fit
# Store debug info
st.session_state['debug_scores'] = {
'skill_match': skill_match,
'skill_score': skill_score,
'exp_match_ratio': exp_match_ratio,
'exp_score': exp_score,
'title_match': title_match,
'title_score': title_score,
'raw_weighted': raw_weighted,
'weighted_score': weighted_score,
'fit_score': fit_score,
'matching_skills': matching_skills,
'required_skills': required_skills,
'skill_percentage': f"{len(matching_skills)}/{len(required_skills)}"
}
# Generate assessment
missing = [skill for skill in required_skills if skill not in skills_mentioned]
if fit_score == 2:
assessment = f"{fit_score}: GOOD FIT - {name} demonstrates strong alignment with the {job_title} position. Their background in {industry} appears well-suited for this role's requirements."
elif fit_score == 1:
assessment = f"{fit_score}: POTENTIAL FIT - {name} shows potential for the {job_title} role but has gaps in certain areas. Additional training might be needed in {', '.join(missing[:2])}."
else:
assessment = f"{fit_score}: NO FIT - {name}'s background shows limited alignment with this {job_title} position. Their experience and skills differ significantly from the requirements."
return assessment, fit_score, time.time() - start
def analyze_job_fit(resume_summary, job_description, models):
start = time.time()
job_requirements = extract_job_requirements(job_description, models)
assessment, fit_score, _ = evaluate_job_fit(resume_summary, job_requirements, models)
return assessment, fit_score, time.time() - start
#####################################
# Main Function
#####################################
def main():
# Initialize session state for debug info
if 'debug_scores' not in st.session_state:
st.session_state['debug_scores'] = {}
st.title("Resume-Job Fit Analyzer")
st.markdown("Upload your resume file in **.docx**, **.doc**, or **.txt** format and enter a job description to see how well you match.")
# Load models and get inputs
models = load_models()
uploaded_file = st.file_uploader("Upload your resume", type=["docx", "doc", "txt"])
job_description = st.text_area("Enter Job Description", height=200, placeholder="Paste the job description here...")
# Debug toggle (uncomment to add debug mode)
# show_debug = st.sidebar.checkbox("Show Debug Info", value=False)
# Process when button clicked
if uploaded_file and job_description and st.button("Analyze Job Fit"):
progress = st.progress(0)
status = st.empty()
# Step 1: Extract text
status.text("Step 1/3: Extracting text from resume...")
resume_text = extract_text_from_file(uploaded_file)
progress.progress(25)
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
st.error(resume_text)
else:
# Step 2: Generate summary
status.text("Step 2/3: Analyzing resume...")
summary, summary_time = summarize_resume_text(resume_text, models)
progress.progress(50)
st.subheader("Your Resume Summary")
st.markdown(summary)
# Step 3: Evaluate fit
status.text("Step 3/3: Evaluating job fit...")
assessment, fit_score, eval_time = analyze_job_fit(summary, job_description, models)
progress.progress(100)
status.empty()
# Display results
st.subheader("Job Fit Assessment")
fit_labels = {0: "NOT FIT", 1: "POTENTIAL FIT", 2: "GOOD FIT"}
colors = {0: "red", 1: "orange", 2: "green"}
st.markdown(f"<h2 style='color: {colors[fit_score]};'>{fit_labels[fit_score]}</h2>", unsafe_allow_html=True)
st.markdown(assessment)
st.info(f"Analysis completed in {(summary_time + eval_time):.2f} seconds")
# Recommendations
st.subheader("Recommended Next Steps")
if fit_score == 2:
st.markdown("""
- Apply for this position as you appear to be a good match
- Prepare for interviews by focusing on your relevant experience
- Highlight your matching skills in your cover letter
""")
elif fit_score == 1:
st.markdown("""
- Consider applying but address skill gaps in your cover letter
- Emphasize transferable skills and relevant experience
- Prepare to discuss how you can quickly develop missing skills
""")
else:
st.markdown("""
- Look for positions better aligned with your current skills
- If interested in this field, focus on developing the required skills
- Consider similar roles with fewer experience requirements
""")
# Show debug scores if enabled
# if show_debug:
# st.subheader("Debug Information")
# st.json(st.session_state['debug_scores'])
if __name__ == "__main__":
main()