Spaces:
Sleeping
Sleeping
import os | |
import tempfile | |
import re | |
import streamlit as st | |
import docx | |
import textract | |
from sentence_transformers import SentenceTransformer, util | |
##################################### | |
# Function: Extract Text from File | |
##################################### | |
def extract_text_from_file(file_obj): | |
""" | |
Extract text from .doc and .docx files. | |
Returns the extracted text or an error message if extraction fails. | |
""" | |
filename = file_obj.name | |
ext = os.path.splitext(filename)[1].lower() | |
text = "" | |
if ext == ".docx": | |
try: | |
document = docx.Document(file_obj) | |
text = "\n".join([para.text for para in document.paragraphs]) | |
except Exception as e: | |
text = f"Error processing DOCX file: {e}" | |
elif ext == ".doc": | |
try: | |
# textract requires a file name; save the file temporarily. | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp: | |
tmp.write(file_obj.read()) | |
tmp.flush() | |
tmp_filename = tmp.name | |
text = textract.process(tmp_filename).decode("utf-8") | |
except Exception as e: | |
text = f"Error processing DOC file: {e}" | |
finally: | |
try: | |
os.remove(tmp_filename) | |
except Exception: | |
pass | |
else: | |
text = "Unsupported file type." | |
return text | |
##################################### | |
# Function: Extract Basic Resume Information | |
##################################### | |
def extract_basic_resume_info(text): | |
""" | |
Parse the extracted text to extract/summarize: | |
- Name | |
- Age | |
- Job Experience (capturing the block under the "experience" section) | |
- Skills | |
- Education | |
Returns a dictionary with the extracted elements. | |
""" | |
info = { | |
"Name": None, | |
"Age": None, | |
"Job Experience": None, | |
"Skills": None, | |
"Education": None, | |
} | |
# Extract Name (e.g., "CONG, An Dong" from the first line) | |
name_match = re.search(r"^([A-Z]+)[,\s]+([A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)", text, re.MULTILINE) | |
if name_match: | |
info["Name"] = f"{name_match.group(1)} {name_match.group(2)}" | |
else: | |
# Fallback heuristic: assume a line with two or three capitalized words might be the candidate's name. | |
potential_names = re.findall(r"\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+){1,2}\b", text) | |
if potential_names: | |
info["Name"] = potential_names[0] | |
# Extract Age (e.g., "Age: 28") | |
age_match = re.search(r"[Aa]ge[:\-]\s*(\d{1,3})", text) | |
if age_match: | |
info["Age"] = age_match.group(1) | |
# Extract Job Experience using the "experience" section. | |
# Capture everything after the word "experience" until a new section or the end. | |
experience_match = re.search( | |
r"experience\s*(.*?)(?:\n\s*\n|additional information|skills|education|$)", | |
text, | |
re.IGNORECASE | re.DOTALL, | |
) | |
if experience_match: | |
job_experience = experience_match.group(1).strip() | |
info["Job Experience"] = " ".join(job_experience.split()) | |
else: | |
# Fallback if not a labeled section. | |
exp_match = re.search( | |
r"(\d+)\s+(years|yrs)\s+(?:of\s+)?experience", text, re.IGNORECASE | |
) | |
if exp_match: | |
info["Job Experience"] = f"{exp_match.group(1)} {exp_match.group(2)}" | |
# Extract Skills (e.g., "Skills: Python, Java, SQL") | |
skills_match = re.search(r"(Skills|Technical Skills)[:\-]\s*(.+)", text, re.IGNORECASE) | |
if skills_match: | |
skills_str = skills_match.group(2).strip() | |
info["Skills"] = skills_str.rstrip(".") | |
# Extract Education (e.g., "Education: ...") | |
edu_match = re.search( | |
r"education\s*(.*?)(?:\n\s*\n|experience|$)", text, re.IGNORECASE | re.DOTALL | |
) | |
if edu_match: | |
education_block = edu_match.group(1).strip() | |
info["Education"] = " ".join(education_block.split()) | |
else: | |
# Fallback: search for common degree identifiers. | |
edu_match = re.search(r"(Bachelor|Master|B\.Sc|M\.Sc|Ph\.D)[^\n]+", text) | |
if edu_match: | |
info["Education"] = edu_match.group(0) | |
return info | |
##################################### | |
# Function: Summarize Basic Info into a Paragraph | |
##################################### | |
def summarize_basic_info(info): | |
""" | |
Combine the extracted resume elements into a concise summary paragraph. | |
""" | |
parts = [] | |
if info.get("Name"): | |
parts.append(f"Candidate {info['Name']}") | |
else: | |
parts.append("The candidate") | |
if info.get("Age"): | |
parts.append(f"aged {info['Age']}") | |
if info.get("Job Experience"): | |
parts.append(f"with job experience: {info['Job Experience']}") | |
if info.get("Skills"): | |
parts.append(f"skilled in {info['Skills']}") | |
if info.get("Education"): | |
parts.append(f"and educated in {info['Education']}") | |
summary_paragraph = ", ".join(parts) + "." | |
return summary_paragraph | |
##################################### | |
# Function: Compare Candidate Summary to Company Prompt | |
##################################### | |
def compute_suitability(candidate_summary, company_prompt, model): | |
""" | |
Compute the cosine similarity between candidate summary and company prompt embeddings. | |
Returns a score in the range [0, 1]. | |
""" | |
candidate_embed = model.encode(candidate_summary, convert_to_tensor=True) | |
company_embed = model.encode(company_prompt, convert_to_tensor=True) | |
cosine_sim = util.cos_sim(candidate_embed, company_embed) | |
score = float(cosine_sim.item()) | |
return score | |
##################################### | |
# Main Resume Processing Logic | |
##################################### | |
def process_resume(file_obj): | |
resume_text = extract_text_from_file(file_obj) | |
basic_info = extract_basic_resume_info(resume_text) | |
summary_paragraph = summarize_basic_info(basic_info) | |
return summary_paragraph | |
##################################### | |
# Load the Sentence-BERT Model | |
##################################### | |
def load_model(): | |
return SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
model = load_model() | |
##################################### | |
# Streamlit Interface | |
##################################### | |
st.title("Resume Analyzer and Company Suitability Checker") | |
st.markdown( | |
""" | |
Upload your resume file in **.doc** or **.docx** format. The app extracts key details such as name, age, job experience, skills, | |
and education, and summarizes them into a single paragraph. Then, it compares the candidate summary with a company profile | |
(using a pre-defined prompt for Google LLC) to produce a suitability score. | |
""" | |
) | |
# File uploader for resume | |
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"]) | |
# Button to process the resume and store the summary in session state. | |
if st.button("Process Resume"): | |
if uploaded_file is None: | |
st.error("Please upload a resume file first.") | |
else: | |
with st.spinner("Processing resume..."): | |
candidate_summary = process_resume(uploaded_file) | |
st.session_state["candidate_summary"] = candidate_summary | |
st.subheader("Candidate Summary") | |
st.markdown(candidate_summary) | |
# Pre-define the company prompt for Google LLC. | |
default_company_prompt = ( | |
"Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, " | |
"artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong " | |
"problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming " | |
"languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. " | |
"Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture " | |
"of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology." | |
) | |
# Company prompt text area. | |
company_prompt = st.text_area( | |
"Enter company details:", | |
value=default_company_prompt, | |
height=150, | |
) | |
# Button to compute the suitability score. | |
if st.button("Compute Suitability Score"): | |
if "candidate_summary" not in st.session_state: | |
st.error("Please process the resume first!") | |
else: | |
candidate_summary = st.session_state["candidate_summary"] | |
if candidate_summary.strip() == "": | |
st.error("Candidate summary is empty; please check your resume file.") | |
elif company_prompt.strip() == "": | |
st.error("Please enter the company information.") | |
else: | |
with st.spinner("Computing suitability score..."): | |
score = compute_suitability(candidate_summary, company_prompt, model) | |
st.success(f"Suitability Score: {score:.2f} (range 0 to 1)") |