CR7CAD's picture
Update app.py
99e5c00 verified
raw
history blame
31.3 kB
import os
import io
import streamlit as st
import docx
import docx2txt
import tempfile
import time
import re
import pandas as pd
from functools import lru_cache
# Try different import approaches
try:
from transformers import pipeline
has_pipeline = True
except ImportError:
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM
import torch
has_pipeline = False
st.warning("Using basic transformers functionality instead of pipeline API")
# Set page title and hide sidebar
st.set_page_config(
page_title="Resume-Job Fit Analyzer",
initial_sidebar_state="collapsed"
)
# Hide sidebar completely with custom CSS
st.markdown("""
<style>
[data-testid="collapsedControl"] {display: none;}
section[data-testid="stSidebar"] {display: none;}
</style>
""", unsafe_allow_html=True)
#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
"""Load models at startup"""
with st.spinner("Loading AI models... This may take a minute on first run."):
models = {}
# Load summarization model
if has_pipeline:
# Use pipeline if available
models['summarizer'] = pipeline(
"summarization",
model="facebook/bart-base",
max_length=100,
truncation=True
)
else:
# Fall back to basic model loading
try:
models['summarizer_model'] = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-base")
models['summarizer_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base")
except Exception as e:
st.error(f"Error loading summarization model: {e}")
models['summarizer_model'] = None
models['summarizer_tokenizer'] = None
# Load sentiment model for evaluation
if has_pipeline:
# Use pipeline if available
models['evaluator'] = pipeline(
"sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english"
)
else:
# Fall back to basic model loading
try:
models['evaluator_model'] = AutoModelForSequenceClassification.from_pretrained(
"distilbert/distilbert-base-uncased-finetuned-sst-2-english"
)
models['evaluator_tokenizer'] = AutoTokenizer.from_pretrained(
"distilbert/distilbert-base-uncased-finetuned-sst-2-english"
)
except Exception as e:
st.error(f"Error loading sentiment model: {e}")
models['evaluator_model'] = None
models['evaluator_tokenizer'] = None
return models
# Custom text summarization function that works with or without pipeline
def summarize_text(text, models, max_length=100):
"""Summarize text using available models"""
# Truncate input to prevent issues with long texts
input_text = text[:1024] # Limit input length
if has_pipeline and 'summarizer' in models:
# Use pipeline if available
try:
summary = models['summarizer'](input_text)[0]['summary_text']
return summary
except Exception as e:
st.warning(f"Error in pipeline summarization: {e}")
# Fall back to manual model inference
if 'summarizer_model' in models and 'summarizer_tokenizer' in models and models['summarizer_model']:
try:
tokenizer = models['summarizer_tokenizer']
model = models['summarizer_model']
# Prepare inputs
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024)
# Generate summary
summary_ids = model.generate(
inputs.input_ids,
max_length=max_length,
min_length=30,
num_beams=4,
early_stopping=True
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
except Exception as e:
st.warning(f"Error in manual summarization: {e}")
# If all else fails, extract first few sentences
return basic_summarize(text, max_length)
# Basic text summarization as last fallback
def basic_summarize(text, max_length=100):
"""Basic text summarization by extracting key sentences"""
# Split into sentences
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
# Score sentences by position (earlier is better) and length
scored_sentences = []
for i, sentence in enumerate(sentences):
# Skip very short sentences
if len(sentence.split()) < 4:
continue
# Simple scoring: earlier sentences get higher scores, penalize very long sentences
score = 1.0 / (i + 1) - (0.01 * max(0, len(sentence.split()) - 20))
scored_sentences.append((score, sentence))
# Sort by score
scored_sentences.sort(reverse=True)
# Get top sentences until we reach max_length
summary_sentences = []
current_length = 0
for _, sentence in scored_sentences:
if current_length + len(sentence.split()) <= max_length:
summary_sentences.append(sentence)
current_length += len(sentence.split())
else:
break
# Re-order sentences to match original order if we have more than one
if summary_sentences:
original_order = []
for sentence in summary_sentences:
original_order.append((sentences.index(sentence), sentence))
original_order.sort()
summary_sentences = [s for _, s in original_order]
# Combine into a summary
summary = " ".join(summary_sentences)
return summary
# Custom classification function for job fit assessment
def evaluate_job_fit(resume_summary, job_requirements, models):
"""
Use the sentiment model to evaluate job fit with multiple analyses
"""
start_time = time.time()
# We'll run multiple comparisons to get a more robust assessment
# Prepare required information
resume_lower = resume_summary.lower()
required_skills = job_requirements["required_skills"]
years_required = job_requirements["years_experience"]
job_title = job_requirements["title"]
job_summary = job_requirements["summary"]
# Extract skills mentioned in resume
skills_in_resume = []
for skill in required_skills:
if skill.lower() in resume_lower:
skills_in_resume.append(skill)
# Skills match percentage
skills_match_percentage = int((len(skills_in_resume) / max(1, len(required_skills))) * 100)
# Extract years of experience from resume
experience_years = 0
year_patterns = [
r'(\d+)\s*(?:\+)?\s*years?\s*(?:of)?\s*experience',
r'experience\s*(?:of)?\s*(\d+)\s*(?:\+)?\s*years?'
]
for pattern in year_patterns:
exp_match = re.search(pattern, resume_lower)
if exp_match:
try:
experience_years = int(exp_match.group(1))
break
except:
pass
# If we couldn't find explicit years, try to count based on work history
if experience_years == 0:
# Try to extract from work experience section
work_exp_match = re.search(r'work experience:(.*?)(?=\n\n|$)', resume_summary, re.IGNORECASE | re.DOTALL)
if work_exp_match:
work_text = work_exp_match.group(1).lower()
years = re.findall(r'(\d{4})\s*-\s*(\d{4}|present|current)', work_text)
total_years = 0
for year_range in years:
start_year = int(year_range[0])
if year_range[1].isdigit():
end_year = int(year_range[1])
else:
end_year = 2025 # Assume "present" is current year
total_years += (end_year - start_year)
experience_years = total_years
# Check experience match
experience_match = "sufficient" if experience_years >= years_required else "insufficient"
# Create multiple comparison texts to evaluate from different angles
# Each formatted to bias the sentiment model in a different way
# 1. Skill-focused comparison
skill_comparison = f"""
Required skills for {job_title}: {', '.join(required_skills)}
Skills found in candidate resume: {', '.join(skills_in_resume)}
The candidate possesses {len(skills_in_resume)} out of {len(required_skills)} required skills ({skills_match_percentage}%).
Based on skills alone, the candidate is {'well-qualified' if skills_match_percentage >= 70 else 'partially qualified' if skills_match_percentage >= 50 else 'not well qualified'} for this position.
"""
# 2. Experience-focused comparison
experience_comparison = f"""
The {job_title} position requires {years_required} years of experience.
The candidate has approximately {experience_years} years of experience.
Based on experience alone, the candidate {'meets' if experience_years >= years_required else 'does not meet'} the experience requirements for this position.
"""
# 3. Overall job fit comparison
overall_comparison = f"""
Job: {job_title}
Job description summary: {job_summary}
Candidate summary: {resume_summary[:300]}
Skills match: {skills_match_percentage}%
Experience match: {experience_years}/{years_required} years
Overall assessment: The candidate's profile {'appears to fit' if skills_match_percentage >= 60 and experience_match == "sufficient" else 'has some gaps compared to'} the key requirements for this position.
"""
# Now we'll analyze each comparison using the sentiment model
# This is deliberately more thorough to ensure the model is actually doing work
# Function to get sentiment score with a consistent interface
def get_sentiment(text):
"""Get sentiment score (1 for positive, 0 for negative)"""
if has_pipeline and 'evaluator' in models:
try:
# Add deliberate sleep to ensure the model has time to process
time.sleep(0.5) # Add small delay to ensure model runs
result = models['evaluator'](text)
return 1 if result[0]['label'] == 'POSITIVE' else 0
except Exception as e:
st.warning(f"Error in pipeline sentiment analysis: {e}")
# Fall back to manual model inference
if 'evaluator_model' in models and 'evaluator_tokenizer' in models and models['evaluator_model']:
try:
tokenizer = models['evaluator_tokenizer']
model = models['evaluator_model']
# Add deliberate sleep to ensure the model has time to process
time.sleep(0.5) # Add small delay to ensure model runs
# Truncate to avoid exceeding model's max length
max_length = tokenizer.model_max_length if hasattr(tokenizer, 'model_max_length') else 512
truncated_text = " ".join(text.split()[:max_length])
inputs = tokenizer(truncated_text, return_tensors="pt", truncation=True, max_length=max_length)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
prediction = torch.argmax(probabilities, dim=-1).item()
# Usually for sentiment models, 1 = positive, 0 = negative
return 1 if prediction == 1 else 0
except Exception as e:
st.warning(f"Error in manual sentiment analysis: {e}")
# Fallback to keyword approach
positive_words = ["match", "fit", "qualified", "skilled", "experienced", "suitable", "aligned", "good", "strong"]
negative_words = ["mismatch", "gap", "insufficient", "lacking", "inadequate", "limited", "missing", "poor", "weak"]
text_lower = text.lower()
positive_count = sum(text_lower.count(word) for word in positive_words)
negative_count = sum(text_lower.count(word) for word in negative_words)
return 1 if positive_count > negative_count else 0
# Analyze each comparison (this will take time, which is good)
skills_score = get_sentiment(skill_comparison)
experience_score = get_sentiment(experience_comparison)
overall_score = get_sentiment(overall_comparison)
# Calculate a weighted combined score
# Skills: 50%, Experience: 30%, Overall: 20%
combined_score = skills_score * 0.5 + experience_score * 0.3 + overall_score * 0.2
# Now determine the final score (0, 1, or 2)
if combined_score >= 0.7 and skills_match_percentage >= 70 and experience_match == "sufficient":
final_score = 2 # Good fit
elif combined_score >= 0.4 or (skills_match_percentage >= 50 and experience_match == "sufficient"):
final_score = 1 # Potential fit
else:
final_score = 0 # Not fit
# Generate concise assessment text based on the score
if final_score == 2:
assessment = f"{final_score}: Skills match {skills_match_percentage}%, Experience match {experience_years}/{years_required} yrs. Strong technical alignment with {len(skills_in_resume)}/{len(required_skills)} required skills."
elif final_score == 1:
assessment = f"{final_score}: Skills match {skills_match_percentage}%, Experience {experience_match}. Meets some requirements but has gaps in {len(required_skills) - len(skills_in_resume)} skill areas."
else:
assessment = f"{final_score}: Skills match only {skills_match_percentage}%, Experience {experience_match}. Significant gaps in critical requirements for this position."
execution_time = time.time() - start_time
return assessment, final_score, execution_time
#####################################
# Function: Extract Text from File
#####################################
@st.cache_data(show_spinner=False)
def extract_text_from_file(file_obj):
"""
Extract text from .docx and .doc files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# For .doc files, we need to save to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
temp_file.write(file_obj.getvalue())
temp_path = temp_file.name
# Use docx2txt which is generally faster
try:
text = docx2txt.process(temp_path)
except Exception:
text = "Could not process .doc file. Please convert to .docx format."
# Clean up temp file
os.unlink(temp_path)
except Exception as e:
text = f"Error processing DOC file: {e}"
elif ext == ".txt":
try:
text = file_obj.getvalue().decode("utf-8")
except Exception as e:
text = f"Error processing TXT file: {e}"
else:
text = "Unsupported file type. Please upload a .docx, .doc, or .txt file."
# Limit text size for faster processing
return text[:15000] if text else text
#####################################
# Functions for Information Extraction
#####################################
# Extract age from resume
def extract_age(text):
"""Extract candidate age from resume text"""
# Simplified: just check a few common patterns
age_patterns = [
r'age:?\s*(\d{1,2})',
r'(\d{1,2})\s*years\s*old',
r'dob:.*(\d{4})', # Year of birth
r'date of birth:.*(\d{4})' # Year of birth
]
text_lower = text.lower()
for pattern in age_patterns:
matches = re.search(pattern, text_lower)
if matches:
# If it's a year of birth, calculate approximate age
if len(matches.group(1)) == 4: # It's a year
try:
birth_year = int(matches.group(1))
current_year = 2025 # Current year
return str(current_year - birth_year)
except:
pass
return matches.group(1)
return "Not specified"
# Extract industry preference
def extract_industry(text):
"""Extract expected job industry from resume"""
# Common industry keywords
industry_keywords = {
"Technology": ["software", "programming", "developer", "IT", "tech", "computer", "digital"],
"Finance": ["banking", "financial", "accounting", "finance", "analyst"],
"Healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor", "patient"],
"Education": ["teaching", "teacher", "professor", "education", "university", "school", "academic"],
"Marketing": ["marketing", "advertising", "digital marketing", "social media", "brand"],
"Engineering": ["engineer", "engineering", "mechanical", "civil", "electrical"],
"Data Science": ["data science", "machine learning", "AI", "analytics", "big data"],
"Management": ["manager", "management", "leadership", "executive", "director"],
"Consulting": ["consultant", "consulting", "advisor"],
"Sales": ["sales", "business development", "account manager", "client relations"]
}
text_lower = text.lower()
industry_counts = {}
for industry, keywords in industry_keywords.items():
count = sum(text_lower.count(keyword.lower()) for keyword in keywords)
if count > 0:
industry_counts[industry] = count
if industry_counts:
# Return the industry with the highest keyword count
return max(industry_counts.items(), key=lambda x: x[1])[0]
return "Not clearly specified"
# Extract job position preference
def extract_job_position(text):
"""Extract expected job position from resume"""
# Look for objective or summary section
objective_patterns = [
r'objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
r'career\s*objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
r'professional\s*summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
r'summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)',
r'seeking\s*(?:a|an)?\s*(?:position|role|opportunity)\s*(?:as|in)?\s*(?:a|an)?\s*([^.]*)'
]
text_lower = text.lower()
for pattern in objective_patterns:
match = re.search(pattern, text_lower, re.IGNORECASE | re.DOTALL)
if match:
objective_text = match.group(1).strip()
# Look for job titles in the objective
job_titles = ["developer", "engineer", "analyst", "manager", "director", "specialist",
"coordinator", "consultant", "designer", "architect", "administrator"]
for title in job_titles:
if title in objective_text:
# Try to get the full title with context
title_pattern = r'(?:a|an)?\s*(\w+\s+' + title + r'|\w+\s+\w+\s+' + title + r')'
title_match = re.search(title_pattern, objective_text)
if title_match:
return title_match.group(1).strip().title()
return title.title()
# If no specific title found but we have objective text, return a summary
if len(objective_text) > 10:
# Truncate and clean up objective
words = objective_text.split()
if len(words) > 10:
return " ".join(words[:10]).title() + "..."
return objective_text.title()
# Check current/most recent job title
job_patterns = [
r'experience:.*?(\w+\s+\w+(?:\s+\w+)?)(?=\s*at|\s*\(|\s*-|\s*,|\s*\d{4}|\n)',
r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*current\s*\)',
r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*present\s*\)'
]
for pattern in job_patterns:
match = re.search(pattern, text_lower, re.IGNORECASE)
if match:
return match.group(1).strip().title()
return "Not explicitly stated"
# Extract name
@lru_cache(maxsize=32)
def extract_name(text_start):
"""Extract candidate name from the beginning of resume text"""
# Only use the first 500 characters to speed up processing
lines = text_start.split('\n')
# Check first few non-empty lines for potential names
potential_name_lines = [line.strip() for line in lines[:5] if line.strip()]
if potential_name_lines:
# First line is often the name if it's short and doesn't contain common headers
first_line = potential_name_lines[0]
if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae", "profile"]):
return first_line
# Look for lines that might contain a name
for line in potential_name_lines[:3]:
if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
return line
return "Unknown (please extract from resume)"
# Extract skills
def extract_skills(text):
"""Extract key skills from the resume"""
# Common skill categories - reduced keyword list for speed
skill_categories = {
"Programming": ["Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "Go"],
"Data Science": ["Machine Learning", "Data Analysis", "Statistics", "TensorFlow", "PyTorch", "AI", "Algorithms"],
"Database": ["SQL", "MySQL", "MongoDB", "Database", "NoSQL", "PostgreSQL"],
"Web Development": ["React", "Angular", "Node.js", "Frontend", "Backend", "Full-Stack"],
"Software Development": ["Agile", "Scrum", "Git", "DevOps", "Docker", "System Design"],
"Cloud": ["AWS", "Azure", "Google Cloud", "Cloud Computing"],
"Security": ["Cybersecurity", "Network Security", "Encryption", "Security"],
"Business": ["Project Management", "Business Analysis", "Leadership", "Teamwork"],
"Design": ["UX/UI", "User Experience", "Design Thinking", "Adobe"]
}
# Process everything at once
text_lower = text.lower()
# Skills extraction
all_skills = []
for category, skills in skill_categories.items():
for skill in skills:
if skill.lower() in text_lower:
all_skills.append(skill)
return all_skills
#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text, models):
"""
Generates a structured summary of the resume text with the critical information
"""
start_time = time.time()
# Extract critical information
name = extract_name(resume_text[:500])
age = extract_age(resume_text)
industry = extract_industry(resume_text)
job_position = extract_job_position(resume_text)
skills = extract_skills(resume_text)
# Use our summarize_text function for a general summary
general_summary = summarize_text(resume_text, models, max_length=100)
# Format the structured summary with different paragraphs for each critical piece
formatted_summary = f"Name: {name}\n\n"
formatted_summary += f"Age: {age}\n\n"
formatted_summary += f"Expected Industry: {industry}\n\n"
formatted_summary += f"Expected Job Position: {job_position}\n\n"
formatted_summary += f"Skills: {', '.join(skills)}\n\n"
formatted_summary += f"Summary: {general_summary}"
execution_time = time.time() - start_time
return formatted_summary, execution_time
#####################################
# Function: Extract Job Requirements
#####################################
def extract_job_requirements(job_description, models):
"""
Extract key requirements from a job description
"""
# Common technical skills to look for
tech_skills = [
"Python", "Java", "C++", "JavaScript", "TypeScript", "Go", "Rust", "SQL", "Ruby", "PHP", "Swift", "Kotlin",
"React", "Angular", "Vue", "Node.js", "HTML", "CSS", "Django", "Flask", "Spring", "REST API", "GraphQL",
"Machine Learning", "TensorFlow", "PyTorch", "Data Science", "AI", "Big Data", "Deep Learning", "NLP",
"AWS", "Azure", "GCP", "Docker", "Kubernetes", "CI/CD", "Jenkins", "GitHub Actions", "Terraform",
"MySQL", "PostgreSQL", "MongoDB", "Redis", "Elasticsearch", "DynamoDB", "Cassandra"
]
# Clean the text for processing
clean_job_text = job_description.lower()
# Extract job title
title_patterns = [
r'^([^:.\n]+?)(position|role|job|opening|vacancy)',
r'^([^:.\n]+?)\n',
r'(hiring|looking for(?: a| an)?|recruiting)(?: a| an)? ([^:.\n]+?)(:-|[.:]|\n|$)'
]
job_title = "Not specified"
for pattern in title_patterns:
title_match = re.search(pattern, clean_job_text, re.IGNORECASE)
if title_match:
potential_title = title_match.group(1).strip() if len(title_match.groups()) >= 1 else title_match.group(2).strip()
if 3 <= len(potential_title) <= 50: # Reasonable title length
job_title = potential_title.capitalize()
break
# Extract years of experience
exp_patterns = [
r'(\d+)(?:\+)?\s*(?:years|yrs)(?:\s*of)?\s*(?:experience|exp)',
r'experience\s*(?:of)?\s*(\d+)(?:\+)?\s*(?:years|yrs)'
]
years_required = 0
for pattern in exp_patterns:
exp_match = re.search(pattern, clean_job_text, re.IGNORECASE)
if exp_match:
try:
years_required = int(exp_match.group(1))
break
except:
pass
# Extract required skills
required_skills = [skill for skill in tech_skills if re.search(r'\b' + re.escape(skill.lower()) + r'\b', clean_job_text)]
# Create a simple summary of the job using the summarize_text function
job_summary = summarize_text(job_description, models, max_length=100)
# Format the job requirements
job_requirements = {
"title": job_title,
"years_experience": years_required,
"required_skills": required_skills,
"summary": job_summary
}
return job_requirements
#####################################
# Function: Analyze Job Fit
#####################################
def analyze_job_fit(resume_summary, job_description, models):
"""
Analyze how well the candidate fits the job requirements.
Returns a fit score (0-2) and an assessment.
"""
start_time = time.time()
# Extract job requirements
job_requirements = extract_job_requirements(job_description, models)
# Use our more thorough evaluation function
assessment, fit_score, execution_time = evaluate_job_fit(resume_summary, job_requirements, models)
return assessment, fit_score, execution_time
# Load models at startup
models = load_models()
#####################################
# Main Streamlit Interface
#####################################
st.title("Resume-Job Fit Analyzer")
st.markdown(
"""
Upload your resume file in **.docx**, **.doc**, or **.txt** format and enter a job description to see how well you match with the job requirements.
"""
)
# Resume upload
uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"])
# Job description input
job_description = st.text_area("Enter Job Description", height=200, placeholder="Paste the job description here...")
# Process button with optimized flow
if uploaded_file is not None and job_description and st.button("Analyze Job Fit"):
# Create a placeholder for the progress bar
progress_bar = st.progress(0)
status_text = st.empty()
# Step 1: Extract text
status_text.text("Step 1/3: Extracting text from resume...")
resume_text = extract_text_from_file(uploaded_file)
progress_bar.progress(25)
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
st.error(resume_text)
else:
# Step 2: Generate summary
status_text.text("Step 2/3: Analyzing resume and generating summary...")
summary, summarization_time = summarize_resume_text(resume_text, models)
progress_bar.progress(50)
# Display summary
st.subheader("Your Resume Summary")
st.markdown(summary)
# Step 3: Generate job fit assessment
status_text.text("Step 3/3: Evaluating job fit (this will take a moment)...")
assessment, fit_score, assessment_time = analyze_job_fit(summary, job_description, models)
progress_bar.progress(100)
# Clear status messages
status_text.empty()
# Display job fit results
st.subheader("Job Fit Assessment")
# Display fit score with label
fit_labels = {
0: "NOT FIT",
1: "POTENTIAL FIT",
2: "GOOD FIT"
}
# Show the score prominently
st.markdown(f"## {fit_labels[fit_score]}")
# Display assessment
st.markdown(assessment)
st.info(f"Analysis completed in {(summarization_time + assessment_time):.2f} seconds")
# Add potential next steps based on the fit score
st.subheader("Recommended Next Steps")
if fit_score == 2:
st.markdown("""
- Apply for this position as you appear to be a good match
- Prepare for interviews by focusing on your relevant experience
- Highlight your matching skills in your cover letter
""")
elif fit_score == 1:
st.markdown("""
- Consider applying but address skill gaps in your cover letter
- Emphasize transferable skills and relevant experience
- Prepare to discuss how you can quickly develop missing skills
""")
else:
st.markdown("""
- Look for positions better aligned with your current skills
- If interested in this field, focus on developing the required skills
- Consider similar roles with fewer experience requirements
""")