Spaces:
Sleeping
Sleeping
import os | |
import io | |
import streamlit as st | |
import docx | |
import docx2txt | |
import tempfile | |
import time | |
import re | |
import pandas as pd | |
from functools import lru_cache | |
# Try different import approaches | |
try: | |
from transformers import pipeline | |
has_pipeline = True | |
except ImportError: | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM | |
import torch | |
has_pipeline = False | |
st.warning("Using basic transformers functionality instead of pipeline API") | |
# Set page title and hide sidebar | |
st.set_page_config( | |
page_title="Resume-Job Fit Analyzer", | |
initial_sidebar_state="collapsed" | |
) | |
# Hide sidebar completely with custom CSS | |
st.markdown(""" | |
<style> | |
[data-testid="collapsedControl"] {display: none;} | |
section[data-testid="stSidebar"] {display: none;} | |
</style> | |
""", unsafe_allow_html=True) | |
##################################### | |
# Preload Models | |
##################################### | |
def load_models(): | |
"""Load models at startup""" | |
with st.spinner("Loading AI models... This may take a minute on first run."): | |
models = {} | |
# Load summarization model | |
if has_pipeline: | |
# Use pipeline if available, now using the updated model | |
models['summarizer'] = pipeline( | |
"summarization", | |
model="Falconsai/text_summarization", | |
max_length=100, | |
truncation=True | |
) | |
else: | |
# Fall back to basic model loading using the updated summarization model | |
try: | |
models['summarizer_model'] = AutoModelForSeq2SeqLM.from_pretrained("Falconsai/text_summarization") | |
models['summarizer_tokenizer'] = AutoTokenizer.from_pretrained("Falconsai/text_summarization") | |
except Exception as e: | |
st.error(f"Error loading summarization model: {e}") | |
models['summarizer_model'] = None | |
models['summarizer_tokenizer'] = None | |
# Load sentiment model for evaluation - updated model | |
if has_pipeline: | |
# Use pipeline if available | |
models['evaluator'] = pipeline( | |
"sentiment-analysis", | |
model="cardiffnlp/twitter-roberta-base-sentiment-latest" | |
) | |
else: | |
# Fall back to basic model loading using the updated evaluation model | |
try: | |
models['evaluator_model'] = AutoModelForSequenceClassification.from_pretrained( | |
"cardiffnlp/twitter-roberta-base-sentiment-latest" | |
) | |
models['evaluator_tokenizer'] = AutoTokenizer.from_pretrained( | |
"cardiffnlp/twitter-roberta-base-sentiment-latest" | |
) | |
except Exception as e: | |
st.error(f"Error loading sentiment model: {e}") | |
models['evaluator_model'] = None | |
models['evaluator_tokenizer'] = None | |
return models | |
# Custom text summarization function that works with or without pipeline | |
def summarize_text(text, models, max_length=100): | |
"""Summarize text using available models""" | |
# Truncate input to prevent issues with long texts | |
input_text = text[:1024] # Limit input length | |
if has_pipeline and 'summarizer' in models: | |
# Use pipeline if available | |
try: | |
summary = models['summarizer'](input_text)[0]['summary_text'] | |
return summary | |
except Exception as e: | |
st.warning(f"Error in pipeline summarization: {e}") | |
# Fall back to manual model inference | |
if 'summarizer_model' in models and 'summarizer_tokenizer' in models and models['summarizer_model']: | |
try: | |
tokenizer = models['summarizer_tokenizer'] | |
model = models['summarizer_model'] | |
# Prepare inputs | |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024) | |
# Generate summary | |
summary_ids = model.generate( | |
inputs.input_ids, | |
max_length=max_length, | |
min_length=30, | |
num_beams=4, | |
early_stopping=True | |
) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
except Exception as e: | |
st.warning(f"Error in manual summarization: {e}") | |
# If all else fails, extract first few sentences | |
return basic_summarize(text, max_length) | |
# Basic text summarization as last fallback | |
def basic_summarize(text, max_length=100): | |
"""Basic text summarization by extracting key sentences""" | |
# Split into sentences | |
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text) | |
# Score sentences by position (earlier is better) and length | |
scored_sentences = [] | |
for i, sentence in enumerate(sentences): | |
# Skip very short sentences | |
if len(sentence.split()) < 4: | |
continue | |
# Simple scoring: earlier sentences get higher scores, penalize very long sentences | |
score = 1.0 / (i + 1) - (0.01 * max(0, len(sentence.split()) - 20)) | |
scored_sentences.append((score, sentence)) | |
# Sort by score | |
scored_sentences.sort(reverse=True) | |
# Get top sentences until we reach max_length | |
summary_sentences = [] | |
current_length = 0 | |
for _, sentence in scored_sentences: | |
if current_length + len(sentence.split()) <= max_length: | |
summary_sentences.append(sentence) | |
current_length += len(sentence.split()) | |
else: | |
break | |
# Re-order sentences to match original order if we have more than one | |
if summary_sentences: | |
original_order = [] | |
for sentence in summary_sentences: | |
original_order.append((sentences.index(sentence), sentence)) | |
original_order.sort() | |
summary_sentences = [s for _, s in original_order] | |
# Combine into a summary | |
summary = " ".join(summary_sentences) | |
return summary | |
# Custom classification function for comprehensive job fit assessment | |
def evaluate_job_fit(resume_summary, job_requirements, models): | |
""" | |
Use model to evaluate job fit with comprehensive analysis across multiple dimensions | |
""" | |
start_time = time.time() | |
# Extract basic information for context | |
required_skills = job_requirements["required_skills"] | |
years_required = job_requirements["years_experience"] | |
job_title = job_requirements["title"] | |
job_summary = job_requirements["summary"] | |
# Create a comprehensive analysis prompt for the model to evaluate | |
analysis_prompt = f""" | |
RESUME SUMMARY: | |
{resume_summary} | |
JOB DESCRIPTION: | |
Title: {job_title} | |
Required experience: {years_required} years | |
Required skills: {', '.join(required_skills)} | |
Description: {job_summary} | |
TASK: Analyze how well the candidate matches this job based on: | |
1. Technical skills match | |
2. Experience level match | |
3. Role/position alignment | |
4. Industry familiarity | |
5. Potential for success in this position | |
Assign a score from 0-2 where: | |
0 = NOT FIT (major gaps in requirements) | |
1 = POTENTIAL FIT (meets some key requirements) | |
2 = GOOD FIT (meets most or all key requirements) | |
""" | |
# Truncate prompt if needed to fit model's input limits | |
max_prompt_length = 1024 # Set a reasonable limit | |
if len(analysis_prompt) > max_prompt_length: | |
analysis_prompt = analysis_prompt[:max_prompt_length] | |
# Use sentiment analysis model for evaluation | |
fit_score = 0 # Default score | |
# Run multiple sub-analyses to build confidence in our result | |
sub_analyses = [] | |
# Function to run model evaluation | |
def run_model_evaluation(prompt_text): | |
if has_pipeline and 'evaluator' in models: | |
result = models['evaluator'](prompt_text) | |
# Convert sentiment to score | |
if result[0]['label'] == 'POSITIVE' and result[0]['score'] > 0.8: | |
return 2 # Strong positive = good fit | |
elif result[0]['label'] == 'NEUTRAL': | |
return 1 # neutral fit = potential fit | |
else: | |
return 0 # Negative = not fit | |
else: | |
# Manual implementation if pipeline not available | |
tokenizer = models['evaluator_tokenizer'] | |
model = models['evaluator_model'] | |
# Truncate to avoid exceeding model's max length | |
max_length = tokenizer.model_max_length if hasattr(tokenizer, 'model_max_length') else 512 | |
truncated_text = " ".join(prompt_text.split()[:max_length]) | |
inputs = tokenizer(truncated_text, return_tensors="pt", truncation=True, max_length=max_length) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
positive_prob = probabilities[0][1].item() # Positive class probability | |
# Convert probability to score | |
if positive_prob > 0.8: | |
return 2 | |
elif positive_prob > 0.6: | |
return 1 | |
else: | |
return 0 | |
# Run skills analysis | |
skills_prompt = f""" | |
RESUME SKILLS: {resume_summary} | |
JOB REQUIRED SKILLS: {', '.join(required_skills)} | |
Does the candidate have most of the required technical skills for this position? | |
""" | |
skills_score = run_model_evaluation(skills_prompt) | |
sub_analyses.append(skills_score) | |
# Run experience analysis | |
experience_prompt = f""" | |
RESUME EXPERIENCE: {resume_summary} | |
JOB REQUIRED EXPERIENCE: {years_required} years in {job_title} | |
Does the candidate have sufficient years of relevant experience for this position? | |
""" | |
experience_score = run_model_evaluation(experience_prompt) | |
sub_analyses.append(experience_score) | |
# Run role alignment analysis | |
role_prompt = f""" | |
CANDIDATE PROFILE: {resume_summary} | |
JOB ROLE: {job_title}, {job_summary} | |
Is the candidate's background well-aligned with this job role and responsibilities? | |
""" | |
role_score = run_model_evaluation(role_prompt) | |
sub_analyses.append(role_score) | |
# Calculate overall score (weighted average) | |
# Skills: 40%, Experience: 30%, Role alignment: 30% | |
weights = [0.4, 0.3, 0.3] | |
weighted_score = sum(score * weight for score, weight in zip(sub_analyses, weights)) | |
# Convert to integer score (0-2) | |
if weighted_score >= 1.5: | |
fit_score = 2 | |
elif weighted_score >= 0.8: | |
fit_score = 1 | |
else: | |
fit_score = 0 | |
# Extract key information from resume for assessment | |
# Parse name, age, industry from resume summary | |
name_match = re.search(r'Name:\s*(.*?)(?=\n|\Z)', resume_summary) | |
name = name_match.group(1).strip() if name_match else "The candidate" | |
age_match = re.search(r'Age:\s*(.*?)(?=\n|\Z)', resume_summary) | |
age = age_match.group(1).strip() if age_match else "unspecified age" | |
industry_match = re.search(r'Expected Industry:\s*(.*?)(?=\n|\Z)', resume_summary) | |
industry = industry_match.group(1).strip() if industry_match else "unspecified industry" | |
# Count matching skills but don't show the percentage in output | |
resume_lower = resume_summary.lower() | |
matching_skills = [skill for skill in required_skills if skill.lower() in resume_lower] | |
missing_skills = [skill for skill in required_skills if skill.lower() not in resume_lower] | |
# Generate assessment text based on score with more holistic evaluation | |
if fit_score == 2: | |
fit_assessment = f"{fit_score}: {name} demonstrates strong alignment with the {job_title} position. Their background in {industry} and professional experience appear well-suited for this role's requirements. The technical expertise matches what the position demands." | |
elif fit_score == 1: | |
fit_assessment = f"{fit_score}: {name} shows potential for the {job_title} role with some relevant experience, though there are gaps in certain technical areas. Their {industry} background provides partial alignment with the position requirements. Additional training might be needed in {', '.join(missing_skills[:2])} if pursuing this opportunity." | |
else: | |
# For score 0, be constructive but honest | |
fit_assessment = f"{fit_score}: {name}'s current background shows limited alignment with this {job_title} position. Their experience level and technical background differ significantly from the role requirements. A position better matching their {industry} expertise might be more suitable." | |
execution_time = time.time() - start_time | |
return fit_assessment, fit_score, execution_time | |
##################################### | |
# Function: Extract Text from File | |
##################################### | |
def extract_text_from_file(file_obj): | |
""" | |
Extract text from .docx and .doc files. | |
Returns the extracted text or an error message if extraction fails. | |
""" | |
filename = file_obj.name | |
ext = os.path.splitext(filename)[1].lower() | |
text = "" | |
if ext == ".docx": | |
try: | |
document = docx.Document(file_obj) | |
text = "\n".join(para.text for para in document.paragraphs if para.text.strip()) | |
except Exception as e: | |
text = f"Error processing DOCX file: {e}" | |
elif ext == ".doc": | |
try: | |
# For .doc files, we need to save to a temp file | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file: | |
temp_file.write(file_obj.getvalue()) | |
temp_path = temp_file.name | |
# Use docx2txt which is generally faster | |
try: | |
text = docx2txt.process(temp_path) | |
except Exception: | |
text = "Could not process .doc file. Please convert to .docx format." | |
# Clean up temp file | |
os.unlink(temp_path) | |
except Exception as e: | |
text = f"Error processing DOC file: {e}" | |
elif ext == ".txt": | |
try: | |
text = file_obj.getvalue().decode("utf-8") | |
except Exception as e: | |
text = f"Error processing TXT file: {e}" | |
else: | |
text = "Unsupported file type. Please upload a .docx, .doc, or .txt file." | |
# Limit text size for faster processing | |
return text[:15000] if text else text | |
##################################### | |
# Functions for Information Extraction | |
##################################### | |
# Extract age from resume | |
def extract_age(text): | |
"""Extract candidate age from resume text""" | |
# Simplified: just check a few common patterns | |
age_patterns = [ | |
r'age:?\s*(\d{1,2})', | |
r'(\d{1,2})\s*years\s*old', | |
r'dob:.*(\d{4})', # Year of birth | |
r'date of birth:.*(\d{4})' # Year of birth | |
] | |
text_lower = text.lower() | |
for pattern in age_patterns: | |
matches = re.search(pattern, text_lower) | |
if matches: | |
# If it's a year of birth, calculate approximate age | |
if len(matches.group(1)) == 4: # It's a year | |
try: | |
birth_year = int(matches.group(1)) | |
current_year = 2025 # Current year | |
return str(current_year - birth_year) | |
except: | |
pass | |
return matches.group(1) | |
return "Not specified" | |
# Extract industry preference | |
def extract_industry(text): | |
"""Extract expected job industry from resume""" | |
# Common industry keywords | |
industry_keywords = { | |
"Technology": ["software", "programming", "developer", "IT", "tech", "computer", "digital"], | |
"Finance": ["banking", "financial", "accounting", "finance", "analyst"], | |
"Healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor", "patient"], | |
"Education": ["teaching", "teacher", "professor", "education", "university", "school", "academic"], | |
"Marketing": ["marketing", "advertising", "digital marketing", "social media", "brand"], | |
"Engineering": ["engineer", "engineering", "mechanical", "civil", "electrical"], | |
"Data Science": ["data science", "machine learning", "AI", "analytics", "big data"], | |
"Management": ["manager", "management", "leadership", "executive", "director"], | |
"Consulting": ["consultant", "consulting", "advisor"], | |
"Sales": ["sales", "business development", "account manager", "client relations"] | |
} | |
text_lower = text.lower() | |
industry_counts = {} | |
for industry, keywords in industry_keywords.items(): | |
count = sum(text_lower.count(keyword.lower()) for keyword in keywords) | |
if count > 0: | |
industry_counts[industry] = count | |
if industry_counts: | |
# Return the industry with the highest keyword count | |
return max(industry_counts.items(), key=lambda x: x[1])[0] | |
return "Not clearly specified" | |
# Extract job position preference | |
def extract_job_position(text): | |
"""Extract expected job position from resume""" | |
# Look for objective or summary section | |
objective_patterns = [ | |
r'objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', | |
r'career\s*objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', | |
r'professional\s*summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', | |
r'summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', | |
r'seeking\s*(?:a|an)?\s*(?:position|role|opportunity)\s*(?:as|in)?\s*(?:a|an)?\s*([^.]*)' | |
] | |
text_lower = text.lower() | |
for pattern in objective_patterns: | |
match = re.search(pattern, text_lower, re.IGNORECASE | re.DOTALL) | |
if match: | |
objective_text = match.group(1).strip() | |
# Look for job titles in the objective | |
job_titles = ["developer", "engineer", "analyst", "manager", "director", "specialist", | |
"coordinator", "consultant", "designer", "architect", "administrator"] | |
for title in job_titles: | |
if title in objective_text: | |
# Try to get the full title with context | |
title_pattern = r'(?:a|an)?\s*(\w+\s+' + title + r'|\w+\s+\w+\s+' + title + r')' | |
title_match = re.search(title_pattern, objective_text) | |
if title_match: | |
return title_match.group(1).strip().title() | |
return title.title() | |
# If no specific title found but we have objective text, return a summary | |
if len(objective_text) > 10: | |
# Truncate and clean up objective | |
words = objective_text.split() | |
if len(words) > 10: | |
return " ".join(words[:10]).title() + "..." | |
return objective_text.title() | |
# Check current/most recent job title | |
job_patterns = [ | |
r'experience:.*?(\w+\s+\w+(?:\s+\w+)?)(?=\s*at|\s*\(|\s*-|\s*,|\s*\d{4}|\n)', | |
r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*current\s*\)', | |
r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*present\s*\)' | |
] | |
for pattern in job_patterns: | |
match = re.search(pattern, text_lower, re.IGNORECASE) | |
if match: | |
return match.group(1).strip().title() | |
return "Not explicitly stated" | |
# Extract name | |
def extract_name(text_start): | |
"""Extract candidate name from the beginning of resume text""" | |
# Only use the first 500 characters to speed up processing | |
lines = text_start.split('\n') | |
# Check first few non-empty lines for potential names | |
potential_name_lines = [line.strip() for line in lines[:5] if line.strip()] | |
if potential_name_lines: | |
# First line is often the name if it's short and doesn't contain common headers | |
first_line = potential_name_lines[0] | |
if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae", "profile"]): | |
return first_line | |
# Look for lines that might contain a name | |
for line in potential_name_lines[:3]: | |
if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]): | |
return line | |
return "Unknown (please extract from resume)" | |
# Extract skills | |
def extract_skills(text): | |
"""Extract key skills from the resume""" | |
# Common skill categories - reduced keyword list for speed | |
skill_categories = { | |
"Programming": ["Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "Go"], | |
"Data Science": ["Machine Learning", "Data Analysis", "Statistics", "TensorFlow", "PyTorch", "AI", "Algorithms"], | |
"Database": ["SQL", "MySQL", "MongoDB", "Database", "NoSQL", "PostgreSQL"], | |
"Web Development": ["React", "Angular", "Node.js", "Frontend", "Backend", "Full-Stack"], | |
"Software Development": ["Agile", "Scrum", "Git", "DevOps", "Docker", "System Design"], | |
"Cloud": ["AWS", "Azure", "Google Cloud", "Cloud Computing"], | |
"Security": ["Cybersecurity", "Network Security", "Encryption", "Security"], | |
"Business": ["Project Management", "Business Analysis", "Leadership", "Teamwork"], | |
"Design": ["UX/UI", "User Experience", "Design Thinking", "Adobe"] | |
} | |
# Process everything at once | |
text_lower = text.lower() | |
# Skills extraction | |
all_skills = [] | |
for category, skills in skill_categories.items(): | |
for skill in skills: | |
if skill.lower() in text_lower: | |
all_skills.append(skill) | |
return all_skills | |
##################################### | |
# Function: Summarize Resume Text | |
##################################### | |
def summarize_resume_text(resume_text, models): | |
""" | |
Generates a structured summary of the resume text with the critical information | |
""" | |
start_time = time.time() | |
# Extract critical information | |
name = extract_name(resume_text[:500]) | |
age = extract_age(resume_text) | |
industry = extract_industry(resume_text) | |
job_position = extract_job_position(resume_text) | |
skills = extract_skills(resume_text) | |
# Generate overall summary using the pipeline model if available | |
try: | |
if has_pipeline and 'summarizer' in models: | |
# Truncate text to avoid issues with very long resumes | |
truncated_text = resume_text[:2000] # Limit input to 2000 chars | |
# Use pipeline model to generate the summary | |
model_summary = models['summarizer']( | |
truncated_text, | |
max_length=100, | |
min_length=30, | |
do_sample=False | |
)[0]['summary_text'] | |
else: | |
# Fallback if pipeline is not available | |
model_summary = summarize_text(resume_text, models, max_length=100) | |
except Exception as e: | |
st.warning(f"Error in resume summarization: {e}") | |
model_summary = "Error generating summary. Please check the original resume." | |
# Format the structured summary with different paragraphs for each critical piece | |
formatted_summary = f"Name: {name}\n\n" | |
formatted_summary += f"Age: {age}\n\n" | |
formatted_summary += f"Expected Industry: {industry}\n\n" | |
formatted_summary += f"Expected Job Position: {job_position}\n\n" | |
formatted_summary += f"Skills: {', '.join(skills)}\n\n" | |
formatted_summary += f"Summary: {model_summary}" | |
execution_time = time.time() - start_time | |
return formatted_summary, execution_time | |
##################################### | |
# Function: Extract Job Requirements | |
##################################### | |
def extract_job_requirements(job_description, models): | |
""" | |
Extract key requirements from a job description | |
""" | |
# Common technical skills to look for | |
tech_skills = [ | |
"Python", "Java", "C++", "JavaScript", "TypeScript", "Go", "Rust", "SQL", "Ruby", "PHP", "Swift", "Kotlin", | |
"React", "Angular", "Vue", "Node.js", "HTML", "CSS", "Django", "Flask", "Spring", "REST API", "GraphQL", | |
"Machine Learning", "TensorFlow", "PyTorch", "Data Science", "AI", "Big Data", "Deep Learning", "NLP", | |
"AWS", "Azure", "GCP", "Docker", "Kubernetes", "CI/CD", "Jenkins", "GitHub Actions", "Terraform", | |
"MySQL", "PostgreSQL", "MongoDB", "Redis", "Elasticsearch", "DynamoDB", "Cassandra" | |
] | |
# Clean the text for processing | |
clean_job_text = job_description.lower() | |
# Extract job title | |
title_patterns = [ | |
r'^([^:.\n]+?)(position|role|job|opening|vacancy)', | |
r'^([^:.\n]+?)\n', | |
r'(hiring|looking for(?: a| an)?|recruiting)(?: a| an)? ([^:.\n]+?)(:-|[.:]|\n|$)' | |
] | |
job_title = "Not specified" | |
for pattern in title_patterns: | |
title_match = re.search(pattern, clean_job_text, re.IGNORECASE) | |
if title_match: | |
potential_title = title_match.group(1).strip() if len(title_match.groups()) >= 1 else title_match.group(2).strip() | |
if 3 <= len(potential_title) <= 50: # Reasonable title length | |
job_title = potential_title.capitalize() | |
break | |
# Extract years of experience | |
exp_patterns = [ | |
r'(\d+)(?:\+)?\s*(?:years|yrs)(?:\s*of)?\s*(?:experience|exp)', | |
r'experience\s*(?:of)?\s*(\d+)(?:\+)?\s*(?:years|yrs)' | |
] | |
years_required = 0 | |
for pattern in exp_patterns: | |
exp_match = re.search(pattern, clean_job_text, re.IGNORECASE) | |
if exp_match: | |
try: | |
years_required = int(exp_match.group(1)) | |
break | |
except: | |
pass | |
# Extract required skills | |
required_skills = [skill for skill in tech_skills if re.search(r'\b' + re.escape(skill.lower()) + r'\b', clean_job_text)] | |
# Create a simple summary of the job using the summarize_text function | |
job_summary = summarize_text(job_description, models, max_length=100) | |
# Format the job requirements | |
job_requirements = { | |
"title": job_title, | |
"years_experience": years_required, | |
"required_skills": required_skills, | |
"summary": job_summary | |
} | |
return job_requirements | |
##################################### | |
# Function: Analyze Job Fit | |
##################################### | |
def analyze_job_fit(resume_summary, job_description, models): | |
""" | |
Analyze how well the candidate fits the job requirements. | |
Returns a fit score (0-2) and an assessment. | |
""" | |
start_time = time.time() | |
# Extract job requirements | |
job_requirements = extract_job_requirements(job_description, models) | |
# Use our more thorough evaluation function | |
assessment, fit_score, execution_time = evaluate_job_fit(resume_summary, job_requirements, models) | |
return assessment, fit_score, execution_time | |
# Load models at startup | |
models = load_models() | |
##################################### | |
# Main Streamlit Interface | |
##################################### | |
st.title("Resume-Job Fit Analyzer") | |
st.markdown( | |
""" | |
Upload your resume file in **.docx**, **.doc**, or **.txt** format and enter a job description to see how well you match with the job requirements. | |
""" | |
) | |
# Resume upload | |
uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"]) | |
# Job description input | |
job_description = st.text_area("Enter Job Description", height=200, placeholder="Paste the job description here...") | |
# Process button with optimized flow | |
if uploaded_file is not None and job_description and st.button("Analyze Job Fit"): | |
# Create a placeholder for the progress bar | |
progress_bar = st.progress(0) | |
status_text = st.empty() | |
# Step 1: Extract text | |
status_text.text("Step 1/3: Extracting text from resume...") | |
resume_text = extract_text_from_file(uploaded_file) | |
progress_bar.progress(25) | |
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.": | |
st.error(resume_text) | |
else: | |
# Step 2: Generate summary | |
status_text.text("Step 2/3: Analyzing resume and generating summary...") | |
summary, summarization_time = summarize_resume_text(resume_text, models) | |
progress_bar.progress(50) | |
# Display summary | |
st.subheader("Your Resume Summary") | |
st.markdown(summary) | |
# Step 3: Generate job fit assessment | |
status_text.text("Step 3/3: Evaluating job fit (this will take a moment)...") | |
assessment, fit_score, assessment_time = analyze_job_fit(summary, job_description, models) | |
progress_bar.progress(100) | |
# Clear status messages | |
status_text.empty() | |
# Display job fit results | |
st.subheader("Job Fit Assessment") | |
# Display fit score with label | |
fit_labels = { | |
0: "NOT FIT", | |
1: "POTENTIAL FIT", | |
2: "GOOD FIT" | |
} | |
# Show the score prominently | |
st.markdown(f"## {fit_labels[fit_score]}") | |
# Display assessment | |
st.markdown(assessment) | |
st.info(f"Analysis completed in {(summarization_time + assessment_time):.2f} seconds") | |
# Add potential next steps based on the fit score | |
st.subheader("Recommended Next Steps") | |
if fit_score == 2: | |
st.markdown(""" | |
- Apply for this position as you appear to be a good match | |
- Prepare for interviews by focusing on your relevant experience | |
- Highlight your matching skills in your cover letter | |
""") | |
elif fit_score == 1: | |
st.markdown(""" | |
- Consider applying but address skill gaps in your cover letter | |
- Emphasize transferable skills and relevant experience | |
- Prepare to discuss how you can quickly develop missing skills | |
""") | |
else: | |
st.markdown(""" | |
- Look for positions better aligned with your current skills | |
- If interested in this field, focus on developing the required skills | |
- Consider similar roles with fewer experience requirements | |
""") | |
if __name__ == "__main__": | |
pass |