Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,12 @@ import os
|
|
2 |
import io
|
3 |
import streamlit as st
|
4 |
import docx
|
5 |
-
from transformers import pipeline
|
6 |
import time
|
7 |
import tempfile
|
8 |
-
import
|
|
|
|
|
|
|
9 |
|
10 |
# Set page title and hide sidebar
|
11 |
st.set_page_config(
|
@@ -22,18 +24,33 @@ st.markdown("""
|
|
22 |
""", unsafe_allow_html=True)
|
23 |
|
24 |
#####################################
|
25 |
-
#
|
26 |
#####################################
|
27 |
@st.cache_resource(show_spinner=True)
|
28 |
def load_models():
|
29 |
-
"""Load models at startup"""
|
30 |
with st.spinner("Loading AI models... This may take a minute on first run."):
|
31 |
models = {}
|
32 |
-
# Load summarization model
|
33 |
-
models['summarizer'] = pipeline("summarization", model="marianna13/flan-t5-base-summarization")
|
34 |
|
35 |
-
#
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
return models
|
39 |
|
@@ -41,42 +58,37 @@ def load_models():
|
|
41 |
models = load_models()
|
42 |
|
43 |
#####################################
|
44 |
-
# Function: Extract Text from File
|
45 |
#####################################
|
46 |
-
|
|
|
47 |
"""
|
48 |
Extract text from .doc or .docx files.
|
49 |
Returns the extracted text or an error message if extraction fails.
|
50 |
"""
|
51 |
-
|
52 |
-
ext = os.path.splitext(filename)[1].lower()
|
53 |
text = ""
|
54 |
|
55 |
if ext == ".docx":
|
56 |
try:
|
57 |
-
|
|
|
|
|
58 |
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
|
59 |
except Exception as e:
|
60 |
text = f"Error processing DOCX file: {e}"
|
61 |
elif ext == ".doc":
|
62 |
try:
|
63 |
-
# For .doc files, we need to save to a temp file
|
64 |
-
# This example uses antiword which needs to be installed in the environment
|
65 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
|
66 |
-
temp_file.write(
|
67 |
temp_path = temp_file.name
|
68 |
|
69 |
-
#
|
70 |
try:
|
71 |
-
import docx2txt
|
72 |
text = docx2txt.process(temp_path)
|
73 |
-
except
|
74 |
-
|
75 |
-
try:
|
76 |
-
text = subprocess.check_output(['antiword', temp_path]).decode('utf-8')
|
77 |
-
except:
|
78 |
-
# If all else fails, inform the user
|
79 |
-
text = "Could not process .doc file. Please convert to .docx format."
|
80 |
|
81 |
# Clean up temp file
|
82 |
os.unlink(temp_path)
|
@@ -88,61 +100,52 @@ def extract_text_from_file(file_obj):
|
|
88 |
return text
|
89 |
|
90 |
#####################################
|
91 |
-
# Function: Summarize Resume Text
|
92 |
#####################################
|
93 |
def summarize_resume_text(resume_text, models):
|
94 |
"""
|
95 |
-
Generates a concise summary of the resume text using
|
96 |
"""
|
97 |
start_time = time.time()
|
98 |
|
99 |
summarizer = models['summarizer']
|
100 |
|
101 |
-
#
|
102 |
max_input_length = 1024 # Model limit
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
summaries.append(chunk_summary)
|
112 |
-
|
113 |
-
candidate_summary = " ".join(summaries)
|
114 |
-
if len(candidate_summary) > max_input_length:
|
115 |
-
candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text']
|
116 |
-
else:
|
117 |
-
candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
|
118 |
|
119 |
execution_time = time.time() - start_time
|
120 |
|
121 |
return candidate_summary, execution_time
|
122 |
|
123 |
#####################################
|
124 |
-
# Function: Generate Suitability Assessment
|
125 |
#####################################
|
126 |
def generate_suitability_assessment(candidate_summary, company_prompt, models):
|
127 |
"""
|
128 |
-
Generate a suitability assessment using text generation.
|
129 |
-
Returns the generated assessment text and execution time.
|
130 |
"""
|
131 |
start_time = time.time()
|
132 |
|
133 |
text_generator = models['text_generator']
|
134 |
|
135 |
-
# Create a
|
136 |
-
prompt = f"""
|
137 |
-
Resume Summary: {candidate_summary}
|
138 |
|
139 |
-
Company
|
140 |
|
141 |
-
Suitability Assessment:
|
142 |
-
Based on an analysis of the candidate's profile compared to the company requirements, this candidate"""
|
143 |
|
144 |
-
# Generate text
|
145 |
-
max_length =
|
146 |
generated_text = text_generator(
|
147 |
prompt,
|
148 |
max_length=max_length,
|
@@ -152,28 +155,26 @@ Based on an analysis of the candidate's profile compared to the company requirem
|
|
152 |
do_sample=True
|
153 |
)[0]['generated_text']
|
154 |
|
155 |
-
# Extract only the assessment part
|
156 |
assessment = generated_text[len(prompt):].strip()
|
157 |
|
158 |
-
# Determine a numerical score
|
159 |
-
|
160 |
-
|
161 |
-
negative_words = ['poor', 'weak', 'bad', 'insufficient', 'inadequate', 'not a good fit', 'misaligned', 'lacks', 'does not align']
|
162 |
|
163 |
assessment_lower = assessment.lower()
|
164 |
|
165 |
-
#
|
166 |
-
|
|
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
if word in assessment_lower:
|
174 |
-
score -= 0.1 # Decrease score for negative words
|
175 |
|
176 |
-
# Clamp the score
|
177 |
score = max(0.1, min(0.9, score))
|
178 |
|
179 |
execution_time = time.time() - start_time
|
@@ -206,22 +207,27 @@ company_prompt = st.text_area(
|
|
206 |
# Process button
|
207 |
if uploaded_file is not None and company_prompt and st.button("Analyze Resume"):
|
208 |
with st.spinner("Processing..."):
|
209 |
-
# Extract text from resume
|
210 |
-
resume_text = extract_text_from_file(uploaded_file)
|
211 |
|
212 |
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .doc or .docx file.":
|
213 |
st.error(resume_text)
|
214 |
else:
|
|
|
|
|
|
|
215 |
# Generate summary
|
216 |
summary, summarization_time = summarize_resume_text(resume_text, models)
|
|
|
217 |
|
218 |
# Display summary
|
219 |
st.subheader("Candidate Summary")
|
220 |
st.write(summary)
|
221 |
st.info(f"Summarization completed in {summarization_time:.2f} seconds")
|
222 |
|
223 |
-
# Generate suitability assessment
|
224 |
assessment, estimated_score, generation_time = generate_suitability_assessment(summary, company_prompt, models)
|
|
|
225 |
|
226 |
# Display assessment
|
227 |
st.subheader("Suitability Assessment")
|
|
|
2 |
import io
|
3 |
import streamlit as st
|
4 |
import docx
|
|
|
5 |
import time
|
6 |
import tempfile
|
7 |
+
import torch
|
8 |
+
import transformers
|
9 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
10 |
+
import docx2txt
|
11 |
|
12 |
# Set page title and hide sidebar
|
13 |
st.set_page_config(
|
|
|
24 |
""", unsafe_allow_html=True)
|
25 |
|
26 |
#####################################
|
27 |
+
# Optimized Model Loading
|
28 |
#####################################
|
29 |
@st.cache_resource(show_spinner=True)
|
30 |
def load_models():
|
31 |
+
"""Load models at startup with optimizations"""
|
32 |
with st.spinner("Loading AI models... This may take a minute on first run."):
|
33 |
models = {}
|
|
|
|
|
34 |
|
35 |
+
# Use half-precision for all models to reduce memory usage and increase speed
|
36 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
37 |
+
device = 0 if torch.cuda.is_available() else -1 # Use GPU if available
|
38 |
+
|
39 |
+
# Load a smaller summarization model
|
40 |
+
models['summarizer'] = pipeline(
|
41 |
+
"summarization",
|
42 |
+
model="facebook/bart-large-cnn", # Faster model with good summarization quality
|
43 |
+
torch_dtype=torch_dtype,
|
44 |
+
device=device
|
45 |
+
)
|
46 |
+
|
47 |
+
# Use a smaller and faster text generation model
|
48 |
+
models['text_generator'] = pipeline(
|
49 |
+
"text-generation",
|
50 |
+
model="distilgpt2", # Much smaller than GPT-2
|
51 |
+
torch_dtype=torch_dtype,
|
52 |
+
device=device
|
53 |
+
)
|
54 |
|
55 |
return models
|
56 |
|
|
|
58 |
models = load_models()
|
59 |
|
60 |
#####################################
|
61 |
+
# Function: Extract Text from File - Optimized
|
62 |
#####################################
|
63 |
+
@st.cache_data
|
64 |
+
def extract_text_from_file(file_content, file_name):
|
65 |
"""
|
66 |
Extract text from .doc or .docx files.
|
67 |
Returns the extracted text or an error message if extraction fails.
|
68 |
"""
|
69 |
+
ext = os.path.splitext(file_name)[1].lower()
|
|
|
70 |
text = ""
|
71 |
|
72 |
if ext == ".docx":
|
73 |
try:
|
74 |
+
# Use BytesIO to avoid disk I/O
|
75 |
+
doc_file = io.BytesIO(file_content)
|
76 |
+
document = docx.Document(doc_file)
|
77 |
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
|
78 |
except Exception as e:
|
79 |
text = f"Error processing DOCX file: {e}"
|
80 |
elif ext == ".doc":
|
81 |
try:
|
82 |
+
# For .doc files, we need to save to a temp file
|
|
|
83 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
|
84 |
+
temp_file.write(file_content)
|
85 |
temp_path = temp_file.name
|
86 |
|
87 |
+
# Use docx2txt which is generally faster
|
88 |
try:
|
|
|
89 |
text = docx2txt.process(temp_path)
|
90 |
+
except Exception:
|
91 |
+
text = "Could not process .doc file. Please convert to .docx format."
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
# Clean up temp file
|
94 |
os.unlink(temp_path)
|
|
|
100 |
return text
|
101 |
|
102 |
#####################################
|
103 |
+
# Function: Summarize Resume Text - Optimized
|
104 |
#####################################
|
105 |
def summarize_resume_text(resume_text, models):
|
106 |
"""
|
107 |
+
Generates a concise summary of the resume text using an optimized approach.
|
108 |
"""
|
109 |
start_time = time.time()
|
110 |
|
111 |
summarizer = models['summarizer']
|
112 |
|
113 |
+
# Truncate text to avoid multiple passes
|
114 |
max_input_length = 1024 # Model limit
|
115 |
+
truncated_text = resume_text[:max_input_length] if len(resume_text) > max_input_length else resume_text
|
116 |
|
117 |
+
# Get a concise summary in one pass
|
118 |
+
candidate_summary = summarizer(
|
119 |
+
truncated_text,
|
120 |
+
max_length=150,
|
121 |
+
min_length=30,
|
122 |
+
do_sample=False
|
123 |
+
)[0]['summary_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
execution_time = time.time() - start_time
|
126 |
|
127 |
return candidate_summary, execution_time
|
128 |
|
129 |
#####################################
|
130 |
+
# Function: Generate Suitability Assessment - Optimized
|
131 |
#####################################
|
132 |
def generate_suitability_assessment(candidate_summary, company_prompt, models):
|
133 |
"""
|
134 |
+
Generate a suitability assessment using text generation - optimized.
|
|
|
135 |
"""
|
136 |
start_time = time.time()
|
137 |
|
138 |
text_generator = models['text_generator']
|
139 |
|
140 |
+
# Create a shorter, more focused prompt
|
141 |
+
prompt = f"""Resume: {candidate_summary[:300]}...
|
|
|
142 |
|
143 |
+
Company: {company_prompt[:300]}...
|
144 |
|
145 |
+
Suitability Assessment: This candidate"""
|
|
|
146 |
|
147 |
+
# Generate shorter text for faster completion
|
148 |
+
max_length = 50 + len(prompt.split())
|
149 |
generated_text = text_generator(
|
150 |
prompt,
|
151 |
max_length=max_length,
|
|
|
155 |
do_sample=True
|
156 |
)[0]['generated_text']
|
157 |
|
158 |
+
# Extract only the assessment part
|
159 |
assessment = generated_text[len(prompt):].strip()
|
160 |
|
161 |
+
# Determine a numerical score (simplified for better performance)
|
162 |
+
positive_words = ['excellent', 'perfect', 'great', 'good', 'strong', 'ideal', 'qualified', 'aligns', 'matches', 'suitable']
|
163 |
+
negative_words = ['poor', 'weak', 'bad', 'insufficient', 'inadequate', 'not a good fit', 'misaligned', 'lacks']
|
|
|
164 |
|
165 |
assessment_lower = assessment.lower()
|
166 |
|
167 |
+
# Calculate score
|
168 |
+
positive_count = sum(1 for word in positive_words if word in assessment_lower)
|
169 |
+
negative_count = sum(1 for word in negative_words if word in assessment_lower)
|
170 |
|
171 |
+
total = positive_count + negative_count
|
172 |
+
if total > 0:
|
173 |
+
score = 0.5 + 0.4 * (positive_count - negative_count) / total
|
174 |
+
else:
|
175 |
+
score = 0.5
|
|
|
|
|
176 |
|
177 |
+
# Clamp the score
|
178 |
score = max(0.1, min(0.9, score))
|
179 |
|
180 |
execution_time = time.time() - start_time
|
|
|
207 |
# Process button
|
208 |
if uploaded_file is not None and company_prompt and st.button("Analyze Resume"):
|
209 |
with st.spinner("Processing..."):
|
210 |
+
# Extract text from resume with caching
|
211 |
+
resume_text = extract_text_from_file(uploaded_file.getvalue(), uploaded_file.name)
|
212 |
|
213 |
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .doc or .docx file.":
|
214 |
st.error(resume_text)
|
215 |
else:
|
216 |
+
# Add a progress bar
|
217 |
+
progress_bar = st.progress(0)
|
218 |
+
|
219 |
# Generate summary
|
220 |
summary, summarization_time = summarize_resume_text(resume_text, models)
|
221 |
+
progress_bar.progress(50)
|
222 |
|
223 |
# Display summary
|
224 |
st.subheader("Candidate Summary")
|
225 |
st.write(summary)
|
226 |
st.info(f"Summarization completed in {summarization_time:.2f} seconds")
|
227 |
|
228 |
+
# Generate suitability assessment
|
229 |
assessment, estimated_score, generation_time = generate_suitability_assessment(summary, company_prompt, models)
|
230 |
+
progress_bar.progress(100)
|
231 |
|
232 |
# Display assessment
|
233 |
st.subheader("Suitability Assessment")
|