Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -25,7 +25,7 @@ def extract_text_from_file(file_obj):
|
|
25 |
text = f"Error processing DOCX file: {e}"
|
26 |
elif ext == ".doc":
|
27 |
try:
|
28 |
-
# textract requires a
|
29 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
|
30 |
tmp.write(file_obj.read())
|
31 |
tmp.flush()
|
@@ -40,7 +40,6 @@ def extract_text_from_file(file_obj):
|
|
40 |
pass
|
41 |
else:
|
42 |
text = "Unsupported file type."
|
43 |
-
|
44 |
return text
|
45 |
|
46 |
#####################################
|
@@ -48,10 +47,10 @@ def extract_text_from_file(file_obj):
|
|
48 |
#####################################
|
49 |
def extract_basic_resume_info(text):
|
50 |
"""
|
51 |
-
Parse the extracted text to summarize
|
52 |
- Name
|
53 |
- Age
|
54 |
-
- Job Experience (
|
55 |
- Skills
|
56 |
- Education
|
57 |
|
@@ -65,44 +64,50 @@ def extract_basic_resume_info(text):
|
|
65 |
"Education": None,
|
66 |
}
|
67 |
|
68 |
-
# Extract Name (e.g., "Name: John Doe")
|
69 |
-
name_match = re.search(r"[Nn]ame[:\-]\s*([A-Za-z\s]+)", text)
|
70 |
if name_match:
|
71 |
info["Name"] = name_match.group(1).strip()
|
72 |
else:
|
73 |
-
#
|
74 |
potential_names = re.findall(r"\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+){1,2}\b", text)
|
75 |
if potential_names:
|
76 |
info["Name"] = potential_names[0]
|
77 |
|
78 |
# Extract Age (e.g., "Age: 28")
|
79 |
-
age_match = re.search(r"[Aa]ge[:\-]\s*(\d{1,
|
80 |
if age_match:
|
81 |
info["Age"] = age_match.group(1)
|
82 |
-
|
83 |
-
# Extract Job Experience
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
87 |
else:
|
88 |
-
#
|
89 |
-
|
90 |
-
if
|
91 |
-
info["Job Experience"] =
|
92 |
|
93 |
# Extract Skills (e.g., "Skills: Python, Java, SQL")
|
94 |
-
# This is a simple pattern and might require refinement for your resume formats.
|
95 |
skills_match = re.search(r"(Skills|Technical Skills)[:\-]\s*(.+)", text, re.IGNORECASE)
|
96 |
if skills_match:
|
97 |
-
# Cleanup skills by removing any trailing or extra characters.
|
98 |
skills_str = skills_match.group(2).strip()
|
99 |
info["Skills"] = skills_str.rstrip(".")
|
100 |
-
|
101 |
-
# Extract Education (e.g., "Education:
|
102 |
-
edu_match = re.search(r"
|
103 |
if edu_match:
|
104 |
-
|
105 |
-
info["Education"] =
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
return info
|
108 |
|
@@ -111,7 +116,7 @@ def extract_basic_resume_info(text):
|
|
111 |
#####################################
|
112 |
def summarize_basic_info(info):
|
113 |
"""
|
114 |
-
Combine the extracted
|
115 |
"""
|
116 |
parts = []
|
117 |
|
@@ -124,13 +129,13 @@ def summarize_basic_info(info):
|
|
124 |
parts.append(f"aged {info['Age']}")
|
125 |
|
126 |
if info.get("Job Experience"):
|
127 |
-
parts.append(f"with {info['Job Experience']}
|
128 |
|
129 |
if info.get("Skills"):
|
130 |
parts.append(f"skilled in {info['Skills']}")
|
131 |
|
132 |
if info.get("Education"):
|
133 |
-
parts.append(f"and educated
|
134 |
|
135 |
summary_paragraph = ", ".join(parts) + "."
|
136 |
return summary_paragraph
|
@@ -145,7 +150,7 @@ def process_resume(file_obj):
|
|
145 |
resume_text = extract_text_from_file(file_obj)
|
146 |
# Extract basic info from the text.
|
147 |
basic_info = extract_basic_resume_info(resume_text)
|
148 |
-
# Create a summary paragraph from the
|
149 |
summary_paragraph = summarize_basic_info(basic_info)
|
150 |
return resume_text, summary_paragraph
|
151 |
|
@@ -154,8 +159,8 @@ def process_resume(file_obj):
|
|
154 |
#####################################
|
155 |
st.title("Resume Basic Information Summary")
|
156 |
st.markdown("""
|
157 |
-
Upload your resume file in **.doc** or **.docx** format. The app
|
158 |
-
|
159 |
""")
|
160 |
|
161 |
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
|
@@ -167,7 +172,7 @@ if st.button("Process Resume"):
|
|
167 |
with st.spinner("Processing resume..."):
|
168 |
resume_text, summary_paragraph = process_resume(uploaded_file)
|
169 |
|
170 |
-
st.subheader("Summary
|
171 |
st.markdown(summary_paragraph)
|
172 |
|
173 |
st.subheader("Full Extracted Resume Text")
|
|
|
25 |
text = f"Error processing DOCX file: {e}"
|
26 |
elif ext == ".doc":
|
27 |
try:
|
28 |
+
# textract requires a file name; save the file temporarily.
|
29 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
|
30 |
tmp.write(file_obj.read())
|
31 |
tmp.flush()
|
|
|
40 |
pass
|
41 |
else:
|
42 |
text = "Unsupported file type."
|
|
|
43 |
return text
|
44 |
|
45 |
#####################################
|
|
|
47 |
#####################################
|
48 |
def extract_basic_resume_info(text):
|
49 |
"""
|
50 |
+
Parse the extracted text to extract/summarize:
|
51 |
- Name
|
52 |
- Age
|
53 |
+
- Job Experience (capturing the block under the "experience" section)
|
54 |
- Skills
|
55 |
- Education
|
56 |
|
|
|
64 |
"Education": None,
|
65 |
}
|
66 |
|
67 |
+
# Extract Name (e.g., "Name: John Doe" or from heuristics)
|
68 |
+
name_match = re.search(r"[Nn]ame[:\-]\s*([A-Za-z\s,]+)", text)
|
69 |
if name_match:
|
70 |
info["Name"] = name_match.group(1).strip()
|
71 |
else:
|
72 |
+
# Heuristic: Assume the first line or a line with two or three capitalized words is the candidate's name.
|
73 |
potential_names = re.findall(r"\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+){1,2}\b", text)
|
74 |
if potential_names:
|
75 |
info["Name"] = potential_names[0]
|
76 |
|
77 |
# Extract Age (e.g., "Age: 28")
|
78 |
+
age_match = re.search(r"[Aa]ge[:\-]\s*(\d{1,3})", text)
|
79 |
if age_match:
|
80 |
info["Age"] = age_match.group(1)
|
81 |
+
|
82 |
+
# Extract Job Experience using the "experience" section.
|
83 |
+
# This regex captures everything after the word "experience" until the next section heading (e.g., "additional information" or "skills")
|
84 |
+
experience_match = re.search(r"experience\s*(.*?)(?:\n\s*\n|additional information|$)", text, re.IGNORECASE | re.DOTALL)
|
85 |
+
if experience_match:
|
86 |
+
# Clean up the extracted block by removing any extra whitespace or newlines.
|
87 |
+
job_experience = experience_match.group(1).strip()
|
88 |
+
info["Job Experience"] = " ".join(job_experience.split())
|
89 |
else:
|
90 |
+
# Fallback if a labeled section isn't found.
|
91 |
+
exp_match = re.search(r"(\d+)\s+(years|yrs)\s+(?:of\s+)?experience", text, re.IGNORECASE)
|
92 |
+
if exp_match:
|
93 |
+
info["Job Experience"] = f"{exp_match.group(1)} {exp_match.group(2)}"
|
94 |
|
95 |
# Extract Skills (e.g., "Skills: Python, Java, SQL")
|
|
|
96 |
skills_match = re.search(r"(Skills|Technical Skills)[:\-]\s*(.+)", text, re.IGNORECASE)
|
97 |
if skills_match:
|
|
|
98 |
skills_str = skills_match.group(2).strip()
|
99 |
info["Skills"] = skills_str.rstrip(".")
|
100 |
+
|
101 |
+
# Extract Education (e.g., "Education: ...")
|
102 |
+
edu_match = re.search(r"education\s*(.*?)(?:\n\s*\n|experience|$)", text, re.IGNORECASE | re.DOTALL)
|
103 |
if edu_match:
|
104 |
+
education_block = edu_match.group(1).strip()
|
105 |
+
info["Education"] = " ".join(education_block.split())
|
106 |
+
else:
|
107 |
+
# Fallback: search for lines starting with common degree words.
|
108 |
+
edu_match = re.search(r"(Bachelor|Master|B\.Sc|M\.Sc|Ph\.D)[^\n]+", text)
|
109 |
+
if edu_match:
|
110 |
+
info["Education"] = edu_match.group(0)
|
111 |
|
112 |
return info
|
113 |
|
|
|
116 |
#####################################
|
117 |
def summarize_basic_info(info):
|
118 |
"""
|
119 |
+
Combine the extracted resume elements into a concise summary paragraph.
|
120 |
"""
|
121 |
parts = []
|
122 |
|
|
|
129 |
parts.append(f"aged {info['Age']}")
|
130 |
|
131 |
if info.get("Job Experience"):
|
132 |
+
parts.append(f"with job experience: {info['Job Experience']}")
|
133 |
|
134 |
if info.get("Skills"):
|
135 |
parts.append(f"skilled in {info['Skills']}")
|
136 |
|
137 |
if info.get("Education"):
|
138 |
+
parts.append(f"and educated in {info['Education']}")
|
139 |
|
140 |
summary_paragraph = ", ".join(parts) + "."
|
141 |
return summary_paragraph
|
|
|
150 |
resume_text = extract_text_from_file(file_obj)
|
151 |
# Extract basic info from the text.
|
152 |
basic_info = extract_basic_resume_info(resume_text)
|
153 |
+
# Create a summary paragraph from the basic info.
|
154 |
summary_paragraph = summarize_basic_info(basic_info)
|
155 |
return resume_text, summary_paragraph
|
156 |
|
|
|
159 |
#####################################
|
160 |
st.title("Resume Basic Information Summary")
|
161 |
st.markdown("""
|
162 |
+
Upload your resume file in **.doc** or **.docx** format. The app extracts key details such as name, age, job experience, skills,
|
163 |
+
and education, then summarizes them into a single paragraph.
|
164 |
""")
|
165 |
|
166 |
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
|
|
|
172 |
with st.spinner("Processing resume..."):
|
173 |
resume_text, summary_paragraph = process_resume(uploaded_file)
|
174 |
|
175 |
+
st.subheader("Summary Paragraph")
|
176 |
st.markdown(summary_paragraph)
|
177 |
|
178 |
st.subheader("Full Extracted Resume Text")
|