Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,98 +1,31 @@
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
-
import
|
4 |
import streamlit as st
|
5 |
-
from transformers import pipeline
|
6 |
import docx
|
7 |
import textract
|
8 |
|
9 |
-
from PIL import Image, ImageDraw, ImageFont
|
10 |
-
|
11 |
-
#####################################
|
12 |
-
# Model Loading: Image-Text to Text
|
13 |
-
#####################################
|
14 |
-
@st.cache_resource(show_spinner=False)
|
15 |
-
def load_image_to_text_pipeline():
|
16 |
-
try:
|
17 |
-
# Load the image-text to text model.
|
18 |
-
model_pipeline = pipeline(
|
19 |
-
"image-to-text",
|
20 |
-
model="deepseek-ai/deepseek-vl2-tiny",
|
21 |
-
trust_remote_code=True
|
22 |
-
)
|
23 |
-
return model_pipeline
|
24 |
-
except Exception as e:
|
25 |
-
st.error(f"Error loading image-to-text model: {e}")
|
26 |
-
st.stop()
|
27 |
-
|
28 |
-
model_pipeline = load_image_to_text_pipeline()
|
29 |
-
st.write("Image-text to text model loaded successfully!")
|
30 |
-
|
31 |
-
#####################################
|
32 |
-
# Function: Convert Text to an Image
|
33 |
-
#####################################
|
34 |
-
def text_to_image(text, img_width=800, bg_color="white", text_color="black", font_size=20):
|
35 |
-
"""
|
36 |
-
Convert a long text string into a PIL Image.
|
37 |
-
The function wraps text so that it fits within the desired width.
|
38 |
-
"""
|
39 |
-
# Load a default font.
|
40 |
-
try:
|
41 |
-
font = ImageFont.truetype("arial.ttf", font_size)
|
42 |
-
except IOError:
|
43 |
-
# Fallback to default PIL font if arial is not found.
|
44 |
-
font = ImageFont.load_default()
|
45 |
-
|
46 |
-
# Wrap the text into lines.
|
47 |
-
wrapper = textwrap.TextWrapper(width=80)
|
48 |
-
lines = wrapper.wrap(text=text)
|
49 |
-
if not lines:
|
50 |
-
lines = [" "]
|
51 |
-
|
52 |
-
# Calculate the required image height.
|
53 |
-
line_height = font.getsize("A")[1]
|
54 |
-
img_height = line_height * (len(lines) + 2)
|
55 |
-
|
56 |
-
# Create a new image with white background.
|
57 |
-
img = Image.new("RGB", (img_width, img_height), color=bg_color)
|
58 |
-
draw = ImageDraw.Draw(img)
|
59 |
-
|
60 |
-
# Draw each line of text
|
61 |
-
y_text = 10
|
62 |
-
for line in lines:
|
63 |
-
# Center text horizontally.
|
64 |
-
text_width, _ = draw.textsize(line, font=font)
|
65 |
-
x_text = (img_width - text_width) / 2
|
66 |
-
draw.text((x_text, y_text), line, font=font, fill=text_color)
|
67 |
-
y_text += line_height
|
68 |
-
return img
|
69 |
-
|
70 |
#####################################
|
71 |
# Function: Extract Text from File
|
72 |
#####################################
|
73 |
def extract_text_from_file(file_obj):
|
74 |
"""
|
75 |
-
Extract text from .
|
|
|
76 |
"""
|
77 |
filename = file_obj.name
|
78 |
ext = os.path.splitext(filename)[1].lower()
|
79 |
text = ""
|
80 |
-
|
81 |
-
if ext == ".
|
82 |
-
try:
|
83 |
-
text = file_obj.read().decode("utf-8")
|
84 |
-
except Exception as e:
|
85 |
-
text = f"Error reading text file: {e}"
|
86 |
-
|
87 |
-
elif ext == ".docx":
|
88 |
try:
|
89 |
document = docx.Document(file_obj)
|
90 |
text = "\n".join([para.text for para in document.paragraphs])
|
91 |
except Exception as e:
|
92 |
text = f"Error processing DOCX file: {e}"
|
93 |
-
|
94 |
elif ext == ".doc":
|
95 |
try:
|
|
|
96 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
|
97 |
tmp.write(file_obj.read())
|
98 |
tmp.flush()
|
@@ -107,58 +40,92 @@ def extract_text_from_file(file_obj):
|
|
107 |
pass
|
108 |
else:
|
109 |
text = "Unsupported file type."
|
110 |
-
|
111 |
return text
|
112 |
|
113 |
#####################################
|
114 |
-
# Function:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
#####################################
|
116 |
def process_resume(file_obj):
|
117 |
if file_obj is None:
|
118 |
return None, None
|
119 |
-
|
120 |
-
# Extract text from file.
|
121 |
resume_text = extract_text_from_file(file_obj)
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
# Convert the extracted text to an image.
|
126 |
-
text_image = text_to_image(resume_text)
|
127 |
-
|
128 |
-
try:
|
129 |
-
# Pass the generated image to the image-to-text model.
|
130 |
-
result = model_pipeline(text_image)
|
131 |
-
# The expected output is a list of dictionaries with key "generated_text".
|
132 |
-
if isinstance(result, list) and "generated_text" in result[0]:
|
133 |
-
processed_text = result[0]["generated_text"]
|
134 |
-
else:
|
135 |
-
processed_text = "Unexpected model output format."
|
136 |
-
except Exception as e:
|
137 |
-
processed_text = f"Error during model inference: {e}"
|
138 |
-
|
139 |
-
return resume_text, processed_text
|
140 |
|
141 |
#####################################
|
142 |
# Streamlit Interface
|
143 |
#####################################
|
144 |
-
st.title("Resume
|
145 |
-
st.markdown(
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
and then use the image-text to text model to process it.
|
150 |
-
"""
|
151 |
-
)
|
152 |
|
153 |
-
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"
|
154 |
|
155 |
-
if st.button("
|
156 |
if uploaded_file is None:
|
157 |
st.error("Please upload a file first.")
|
158 |
else:
|
159 |
-
with st.spinner("
|
160 |
-
resume_text,
|
|
|
161 |
st.subheader("Extracted Resume Text")
|
162 |
-
st.text_area("", resume_text, height=
|
163 |
-
|
164 |
-
st.
|
|
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
+
import re
|
4 |
import streamlit as st
|
|
|
5 |
import docx
|
6 |
import textract
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
#####################################
|
9 |
# Function: Extract Text from File
|
10 |
#####################################
|
11 |
def extract_text_from_file(file_obj):
|
12 |
"""
|
13 |
+
Extract text from .doc and .docx files.
|
14 |
+
Returns the extracted text or an error message if extraction fails.
|
15 |
"""
|
16 |
filename = file_obj.name
|
17 |
ext = os.path.splitext(filename)[1].lower()
|
18 |
text = ""
|
19 |
+
|
20 |
+
if ext == ".docx":
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
try:
|
22 |
document = docx.Document(file_obj)
|
23 |
text = "\n".join([para.text for para in document.paragraphs])
|
24 |
except Exception as e:
|
25 |
text = f"Error processing DOCX file: {e}"
|
|
|
26 |
elif ext == ".doc":
|
27 |
try:
|
28 |
+
# textract requires a filename, so create a temporary file.
|
29 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
|
30 |
tmp.write(file_obj.read())
|
31 |
tmp.flush()
|
|
|
40 |
pass
|
41 |
else:
|
42 |
text = "Unsupported file type."
|
43 |
+
|
44 |
return text
|
45 |
|
46 |
#####################################
|
47 |
+
# Function: Extract Basic Resume Information
|
48 |
+
#####################################
|
49 |
+
def extract_basic_resume_info(text):
|
50 |
+
"""
|
51 |
+
Parse the extracted text to summarize basic info:
|
52 |
+
- Name
|
53 |
+
- Age
|
54 |
+
- Work Experience (e.g., number of years or description)
|
55 |
+
- Expected Industry/Direction
|
56 |
+
"""
|
57 |
+
info = {
|
58 |
+
"Name": None,
|
59 |
+
"Age": None,
|
60 |
+
"Work Experience": None,
|
61 |
+
"Expected Industry/Direction": None,
|
62 |
+
}
|
63 |
+
|
64 |
+
# Try to extract Name (e.g., lines like "Name: John Doe")
|
65 |
+
name_match = re.search(r"[Nn]ame[:\-]\s*([A-Za-z\s]+)", text)
|
66 |
+
if name_match:
|
67 |
+
info["Name"] = name_match.group(1).strip()
|
68 |
+
else:
|
69 |
+
# Fallback: Look for a potential name (heuristic: two or three capitalized words)
|
70 |
+
potential_names = re.findall(r"\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+){1,2}\b", text)
|
71 |
+
if potential_names:
|
72 |
+
info["Name"] = potential_names[0]
|
73 |
+
|
74 |
+
# Extract Age (assuming a line like "Age: 28")
|
75 |
+
age_match = re.search(r"[Aa]ge[:\-]\s*(\d{1,2})", text)
|
76 |
+
if age_match:
|
77 |
+
info["Age"] = age_match.group(1)
|
78 |
+
|
79 |
+
# Extract Work Experience (e.g., "5 years of experience" or "Experience: 5 years in...")
|
80 |
+
exp_match = re.search(r"(\d+)\s+(years|yrs)\s+(?:of\s+)?experience", text, re.IGNORECASE)
|
81 |
+
if exp_match:
|
82 |
+
info["Work Experience"] = f"{exp_match.group(1)} {exp_match.group(2)}"
|
83 |
+
else:
|
84 |
+
# Look for a line that has work experience info
|
85 |
+
exp_line = re.search(r"(Experience|Background)[:\-]\s*(.*)", text, re.IGNORECASE)
|
86 |
+
if exp_line:
|
87 |
+
info["Work Experience"] = exp_line.group(2).strip()
|
88 |
+
|
89 |
+
# Extract Expected Industry/Direction
|
90 |
+
# (e.g., "Interest: Software Development" or "Expected Industry: Healthcare")
|
91 |
+
industry_match = re.search(r"(Industry|Interest|Direction)[:\-]\s*(.+)", text, re.IGNORECASE)
|
92 |
+
if industry_match:
|
93 |
+
info["Expected Industry/Direction"] = industry_match.group(2).strip()
|
94 |
+
|
95 |
+
return info
|
96 |
+
|
97 |
+
#####################################
|
98 |
+
# Main Resume Processing Logic
|
99 |
#####################################
|
100 |
def process_resume(file_obj):
|
101 |
if file_obj is None:
|
102 |
return None, None
|
103 |
+
# Extract text content from the file.
|
|
|
104 |
resume_text = extract_text_from_file(file_obj)
|
105 |
+
# Extract summarized basic info from the resume text.
|
106 |
+
basic_info = extract_basic_resume_info(resume_text)
|
107 |
+
return resume_text, basic_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
#####################################
|
110 |
# Streamlit Interface
|
111 |
#####################################
|
112 |
+
st.title("Resume Summary App")
|
113 |
+
st.markdown("""
|
114 |
+
Upload your resume file (supported formats: **.doc** or **.docx**) to extract and summarize its content.
|
115 |
+
The basic details, including name, age, work experience, and expected industry, will be displayed along with the full text content.
|
116 |
+
""")
|
|
|
|
|
|
|
117 |
|
118 |
+
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
|
119 |
|
120 |
+
if st.button("Extract Information"):
|
121 |
if uploaded_file is None:
|
122 |
st.error("Please upload a file first.")
|
123 |
else:
|
124 |
+
with st.spinner("Extracting information..."):
|
125 |
+
resume_text, resume_info = process_resume(uploaded_file)
|
126 |
+
|
127 |
st.subheader("Extracted Resume Text")
|
128 |
+
st.text_area("", resume_text, height=300)
|
129 |
+
|
130 |
+
st.subheader("Basic Resume Information")
|
131 |
+
st.json(resume_info)
|