Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ import re
|
|
9 |
import concurrent.futures
|
10 |
from functools import lru_cache
|
11 |
from transformers import pipeline
|
|
|
12 |
|
13 |
# Set page title and hide sidebar
|
14 |
st.set_page_config(
|
@@ -24,581 +25,158 @@ st.markdown("""
|
|
24 |
</style>
|
25 |
""", unsafe_allow_html=True)
|
26 |
|
27 |
-
# Pre-defined company description for Google
|
28 |
-
GOOGLE_DESCRIPTION = """
|
29 |
|
30 |
#####################################
|
31 |
-
# Preload Models - Optimized
|
32 |
#####################################
|
33 |
@st.cache_resource(show_spinner=True)
|
34 |
def load_models():
|
35 |
-
"""Load models at startup
|
36 |
-
with st.spinner("Loading AI models...
|
37 |
-
models = {
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# We don't need T5 model anymore since we're using template-based feedback
|
47 |
return models
|
48 |
|
49 |
-
# Preload models immediately when app starts
|
50 |
models = load_models()
|
51 |
|
52 |
#####################################
|
53 |
-
# Function: Extract Text from File
|
54 |
#####################################
|
55 |
-
@
|
56 |
def extract_text_from_file(file_obj):
|
57 |
-
"""
|
58 |
-
Extract text from .docx and .doc files.
|
59 |
-
Returns the extracted text or an error message if extraction fails.
|
60 |
-
"""
|
61 |
filename = file_obj.name
|
62 |
ext = os.path.splitext(filename)[1].lower()
|
63 |
text = ""
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
elif ext == ".doc":
|
72 |
-
try:
|
73 |
-
# For .doc files, we need to save to a temp file
|
74 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
|
75 |
temp_file.write(file_obj.getvalue())
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
text = "Could not process .doc file. Please convert to .docx format."
|
83 |
-
|
84 |
-
# Clean up temp file
|
85 |
-
os.unlink(temp_path)
|
86 |
-
except Exception as e:
|
87 |
-
text = f"Error processing DOC file: {e}"
|
88 |
-
elif ext == ".txt":
|
89 |
-
try:
|
90 |
-
text = file_obj.getvalue().decode("utf-8")
|
91 |
-
except Exception as e:
|
92 |
-
text = f"Error processing TXT file: {e}"
|
93 |
-
else:
|
94 |
-
text = "Unsupported file type. Please upload a .docx, .doc, or .txt file."
|
95 |
|
96 |
-
|
97 |
-
return text[:15000] if text else text
|
98 |
|
99 |
#####################################
|
100 |
-
#
|
101 |
#####################################
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
def extract_name(text_start):
|
106 |
-
"""Extract candidate name from the beginning of resume text"""
|
107 |
-
# Only use the first 500 characters to speed up processing
|
108 |
-
lines = text_start.split('\n')
|
109 |
-
|
110 |
-
# Check first few non-empty lines for potential names
|
111 |
-
potential_name_lines = [line.strip() for line in lines[:5] if line.strip()]
|
112 |
-
|
113 |
-
if potential_name_lines:
|
114 |
-
# First line is often the name if it's short and doesn't contain common headers
|
115 |
-
first_line = potential_name_lines[0]
|
116 |
-
if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae", "profile"]):
|
117 |
-
return first_line
|
118 |
-
|
119 |
-
# Look for lines that might contain a name
|
120 |
-
for line in potential_name_lines[:3]:
|
121 |
-
if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
|
122 |
-
return line
|
123 |
-
|
124 |
-
return "Unknown (please extract from resume)"
|
125 |
-
|
126 |
-
def extract_age(text):
|
127 |
-
"""Extract candidate age from resume text"""
|
128 |
-
# Simplified: just check a few common patterns
|
129 |
-
age_patterns = [
|
130 |
-
r'age:?\s*(\d{1,2})',
|
131 |
-
r'(\d{1,2})\s*years\s*old',
|
132 |
-
]
|
133 |
-
|
134 |
text_lower = text.lower()
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
def extract_industry(text, base_summary):
|
143 |
-
"""Extract expected job industry from resume"""
|
144 |
-
# Simplified industry keywords focused on the most common ones
|
145 |
-
industry_keywords = {
|
146 |
-
"technology": ["software", "programming", "developer", "IT", "tech", "computer"],
|
147 |
-
"finance": ["banking", "financial", "accounting", "finance", "analyst"],
|
148 |
-
"healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor"],
|
149 |
-
"education": ["teaching", "teacher", "professor", "education", "university"],
|
150 |
-
"marketing": ["marketing", "advertising", "digital marketing", "social media"],
|
151 |
-
"engineering": ["engineer", "engineering"],
|
152 |
-
"data science": ["data science", "machine learning", "AI", "analytics"],
|
153 |
-
"information systems": ["information systems", "ERP", "systems management"]
|
154 |
}
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
for
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
for degree in degrees:
|
173 |
-
if degree in combined_text:
|
174 |
-
return f"{degree.capitalize()}-related field"
|
175 |
-
|
176 |
-
return "Not clearly specified"
|
177 |
|
178 |
-
|
179 |
-
"""Extract both skills and work experience at once to save processing time"""
|
180 |
-
# Common skill categories - reduced keyword list for speed
|
181 |
-
skill_categories = {
|
182 |
-
"Programming": ["Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "Go"],
|
183 |
-
"Data Science": ["Machine Learning", "Data Analysis", "Statistics", "TensorFlow", "PyTorch", "AI", "Algorithms"],
|
184 |
-
"Database": ["SQL", "MySQL", "MongoDB", "Database", "NoSQL", "PostgreSQL"],
|
185 |
-
"Web Development": ["React", "Angular", "Node.js", "Frontend", "Backend", "Full-Stack"],
|
186 |
-
"Software Development": ["Agile", "Scrum", "Git", "DevOps", "Docker", "System Design"],
|
187 |
-
"Cloud": ["AWS", "Azure", "Google Cloud", "Cloud Computing"],
|
188 |
-
"Security": ["Cybersecurity", "Network Security", "Encryption", "Security"],
|
189 |
-
"Business": ["Project Management", "Business Analysis", "Leadership", "Teamwork"],
|
190 |
-
"Design": ["UX/UI", "User Experience", "Design Thinking", "Adobe"]
|
191 |
-
}
|
192 |
-
|
193 |
-
# Work experience extraction
|
194 |
-
work_headers = [
|
195 |
-
"work experience", "professional experience", "employment history",
|
196 |
-
"work history", "experience"
|
197 |
-
]
|
198 |
-
|
199 |
-
next_section_headers = [
|
200 |
-
"education", "skills", "certifications", "projects", "achievements"
|
201 |
-
]
|
202 |
-
|
203 |
-
# Process everything at once
|
204 |
-
lines = text.split('\n')
|
205 |
-
text_lower = text.lower()
|
206 |
-
|
207 |
-
# Skills extraction
|
208 |
-
found_skills = []
|
209 |
-
for category, skills in skill_categories.items():
|
210 |
-
category_skills = []
|
211 |
-
for skill in skills:
|
212 |
-
if skill.lower() in text_lower:
|
213 |
-
category_skills.append(skill)
|
214 |
-
|
215 |
-
if category_skills:
|
216 |
-
found_skills.append(f"{category}: {', '.join(category_skills)}")
|
217 |
-
|
218 |
-
# Work experience extraction - simplified approach
|
219 |
-
work_section = []
|
220 |
-
in_work_section = False
|
221 |
-
|
222 |
-
for idx, line in enumerate(lines):
|
223 |
-
line_lower = line.lower().strip()
|
224 |
-
|
225 |
-
# Start of work section
|
226 |
-
if not in_work_section:
|
227 |
-
if any(header in line_lower for header in work_headers):
|
228 |
-
in_work_section = True
|
229 |
-
continue
|
230 |
-
# End of work section
|
231 |
-
elif in_work_section:
|
232 |
-
if any(header in line_lower for header in next_section_headers):
|
233 |
-
break
|
234 |
-
|
235 |
-
if line.strip():
|
236 |
-
work_section.append(line.strip())
|
237 |
-
|
238 |
-
# Simplified work formatting
|
239 |
-
if not work_section:
|
240 |
-
work_experience = "Work experience not clearly identified"
|
241 |
-
else:
|
242 |
-
# Just take the first 5-7 lines of the work section as a summary
|
243 |
-
work_lines = []
|
244 |
-
company_count = 0
|
245 |
-
current_company = ""
|
246 |
-
|
247 |
-
for line in work_section:
|
248 |
-
# New company entry often has a date
|
249 |
-
if re.search(r'(19|20)\d{2}', line):
|
250 |
-
company_count += 1
|
251 |
-
if company_count <= 3: # Limit to 3 most recent positions
|
252 |
-
current_company = line
|
253 |
-
work_lines.append(f"**{line}**")
|
254 |
-
else:
|
255 |
-
break
|
256 |
-
elif company_count <= 3 and len(work_lines) < 10: # Limit total lines
|
257 |
-
work_lines.append(line)
|
258 |
-
|
259 |
-
work_experience = "\n• " + "\n• ".join(work_lines[:7]) if work_lines else "Work experience not clearly structured"
|
260 |
-
|
261 |
-
skills_formatted = "\n• " + "\n• ".join(found_skills) if found_skills else "No specific technical skills clearly identified"
|
262 |
-
|
263 |
-
return skills_formatted, work_experience
|
264 |
|
265 |
#####################################
|
266 |
-
#
|
267 |
#####################################
|
268 |
def summarize_resume_text(resume_text):
|
269 |
-
"""
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
max_input_length = 1024 # Model limit
|
276 |
|
277 |
-
# Only summarize the first portion of text for speed
|
278 |
-
text_to_summarize = resume_text[:min(len(resume_text), max_input_length)]
|
279 |
-
base_summary = models['summarizer'](text_to_summarize)[0]['summary_text']
|
280 |
-
|
281 |
-
# Extract information in parallel where possible
|
282 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
283 |
-
|
284 |
-
name_future = executor.submit(extract_name, resume_text[:500]) # Only use start of text
|
285 |
-
age_future = executor.submit(extract_age, resume_text)
|
286 |
-
industry_future = executor.submit(extract_industry, resume_text, base_summary)
|
287 |
-
skills_work_future = executor.submit(extract_skills_and_work, resume_text)
|
288 |
-
|
289 |
-
# Get results
|
290 |
-
name = name_future.result()
|
291 |
-
age = age_future.result()
|
292 |
-
industry = industry_future.result()
|
293 |
-
skills, work_experience = skills_work_future.result()
|
294 |
-
|
295 |
-
# Format the structured summary
|
296 |
-
formatted_summary = f"Name: {name}\n"
|
297 |
-
formatted_summary += f"Age: {age}\n"
|
298 |
-
formatted_summary += f"Expected Job Industry: {industry}\n\n"
|
299 |
-
formatted_summary += f"Previous Work Experience: {work_experience}\n\n"
|
300 |
-
formatted_summary += f"Skills: {skills}"
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
return formatted_summary, execution_time
|
305 |
|
306 |
#####################################
|
307 |
-
#
|
308 |
#####################################
|
309 |
-
def calculate_google_match_score(
|
310 |
-
"""
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
- overall_score: A normalized score between 0 and 1
|
316 |
-
- category_scores: A dictionary with scores for each category
|
317 |
-
- score_breakdown: A formatted string explanation of the scoring
|
318 |
-
"""
|
319 |
-
# Define categories that Google values with specific keywords
|
320 |
-
google_categories = {
|
321 |
-
"Technical Skills": {
|
322 |
-
"keywords": ["python", "java", "c++", "go", "javascript", "sql", "nosql",
|
323 |
-
"algorithms", "data structures", "system design"],
|
324 |
-
"weight": 0.35
|
325 |
-
},
|
326 |
-
"Advanced Technologies": {
|
327 |
-
"keywords": ["artificial intelligence", "machine learning", "cloud computing",
|
328 |
-
"ai", "ml", "cloud", "data science", "big data",
|
329 |
-
"tensorflow", "pytorch", "deep learning"],
|
330 |
-
"weight": 0.25
|
331 |
-
},
|
332 |
-
"Problem Solving": {
|
333 |
-
"keywords": ["problem solving", "algorithms", "analytical", "critical thinking",
|
334 |
-
"debugging", "troubleshooting", "optimization"],
|
335 |
-
"weight": 0.20
|
336 |
-
},
|
337 |
-
"Innovation & Creativity": {
|
338 |
-
"keywords": ["innovation", "creative", "creativity", "novel", "cutting-edge",
|
339 |
-
"research", "design thinking", "innovative"],
|
340 |
-
"weight": 0.10
|
341 |
-
},
|
342 |
-
"Teamwork & Leadership": {
|
343 |
-
"keywords": ["team", "leadership", "collaborate", "collaboration", "communication",
|
344 |
-
"mentoring", "lead", "coordinate", "agile", "scrum"],
|
345 |
-
"weight": 0.10
|
346 |
-
}
|
347 |
}
|
348 |
|
349 |
-
|
350 |
-
|
351 |
-
# Calculate scores for each category
|
352 |
-
category_scores = {}
|
353 |
-
for category, details in google_categories.items():
|
354 |
-
keywords = details["keywords"]
|
355 |
-
max_possible = len(keywords) # Maximum possible matches
|
356 |
-
|
357 |
-
# Count matches (unique keywords found)
|
358 |
-
matches = sum(1 for keyword in keywords if keyword in summary_lower)
|
359 |
-
|
360 |
-
# Calculate category score (0-1 range)
|
361 |
-
if max_possible > 0:
|
362 |
-
raw_score = matches / max_possible
|
363 |
-
# Apply a curve to reward having more matches
|
364 |
-
category_scores[category] = min(1.0, raw_score * 1.5)
|
365 |
-
else:
|
366 |
-
category_scores[category] = 0
|
367 |
-
|
368 |
-
# Calculate weighted overall score
|
369 |
-
overall_score = sum(
|
370 |
-
score * google_categories[category]["weight"]
|
371 |
-
for category, score in category_scores.items()
|
372 |
-
)
|
373 |
-
|
374 |
-
# Ensure overall score is in 0-1 range
|
375 |
-
overall_score = min(1.0, max(0.0, overall_score))
|
376 |
|
377 |
-
|
378 |
-
|
|
|
379 |
|
380 |
-
|
381 |
-
percentage = int(score * 100)
|
382 |
-
weight = int(google_categories[category]["weight"] * 100)
|
383 |
-
score_breakdown += f"• **{category}** ({weight}% of total): {percentage}%\n"
|
384 |
-
|
385 |
-
return overall_score, category_scores, score_breakdown
|
386 |
|
387 |
#####################################
|
388 |
-
#
|
389 |
#####################################
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
],
|
423 |
-
"Teamwork & Leadership": [
|
424 |
-
"demonstrates leadership qualities and teamwork skills that Google looks for in potential employees.",
|
425 |
-
"shows collaborative abilities that would integrate well with Google's team-based structure.",
|
426 |
-
"exhibits the interpersonal skills needed to thrive in Google's collaborative environment."
|
427 |
-
]
|
428 |
-
}
|
429 |
-
|
430 |
-
# More detailed template-based feedback for bottom categories
|
431 |
-
bottom_feedback_templates = {
|
432 |
-
"Technical Skills": [
|
433 |
-
"should strengthen their technical skills, particularly in programming languages commonly used at Google such as Python, Java, or C++.",
|
434 |
-
"would benefit from developing more depth in technical tools and programming capabilities to meet Google's standards.",
|
435 |
-
"needs to enhance their technical expertise to better align with Google's engineering requirements."
|
436 |
-
],
|
437 |
-
"Advanced Technologies": [
|
438 |
-
"would benefit from gaining more experience with AI, machine learning, or cloud technologies that Google prioritizes.",
|
439 |
-
"should develop more expertise in advanced technologies like machine learning or data science to increase their value to Google.",
|
440 |
-
"needs more exposure to the cutting-edge technologies that drive Google's innovation."
|
441 |
-
],
|
442 |
-
"Problem Solving": [
|
443 |
-
"should strengthen their problem-solving abilities, particularly with algorithms and data structures that are crucial for Google interviews.",
|
444 |
-
"would benefit from developing stronger analytical and problem-solving skills to match Google's expectations.",
|
445 |
-
"needs to improve their approach to complex problem-solving to meet Google's standards."
|
446 |
-
],
|
447 |
-
"Innovation & Creativity": [
|
448 |
-
"could develop a more innovative mindset to better align with Google's creative culture.",
|
449 |
-
"should work on demonstrating more creative thinking in their approach to match Google's innovation focus.",
|
450 |
-
"would benefit from cultivating more creativity and out-of-the-box thinking valued at Google."
|
451 |
-
],
|
452 |
-
"Teamwork & Leadership": [
|
453 |
-
"should focus on developing stronger leadership and teamwork skills to thrive in Google's collaborative environment.",
|
454 |
-
"would benefit from more experience in collaborative settings to match Google's team-oriented culture.",
|
455 |
-
"needs to strengthen their interpersonal and leadership capabilities to align with Google's expectations."
|
456 |
-
]
|
457 |
-
}
|
458 |
-
|
459 |
-
# Generate feedback with more detailed templates
|
460 |
-
import random
|
461 |
-
|
462 |
-
# Get top strength feedback
|
463 |
-
top_category = top_categories[0][0]
|
464 |
-
top_score = top_categories[0][1]
|
465 |
-
top_feedback = random.choice(top_feedback_templates.get(top_category, ["shows notable skills"]))
|
466 |
-
|
467 |
-
# Get improvement area feedback
|
468 |
-
bottom_category = bottom_categories[0][0]
|
469 |
-
bottom_score = bottom_categories[0][1]
|
470 |
-
bottom_feedback = random.choice(bottom_feedback_templates.get(bottom_category, ["could improve their skills"]))
|
471 |
-
|
472 |
-
# Construct full feedback
|
473 |
-
feedback = f"This candidate {top_feedback} "
|
474 |
-
|
475 |
-
# Add second strength if it's good
|
476 |
-
if top_categories[1][1] >= 0.6:
|
477 |
-
second_top = top_categories[1][0]
|
478 |
-
second_top_feedback = random.choice(top_feedback_templates.get(second_top, ["has good abilities"]))
|
479 |
-
feedback += f"The candidate also {second_top_feedback} "
|
480 |
-
|
481 |
-
# Add improvement feedback
|
482 |
-
feedback += f"However, the candidate {bottom_feedback} "
|
483 |
-
|
484 |
-
# Add conclusion based on overall score
|
485 |
-
overall_score = sum(score * weight for (category, score), weight in
|
486 |
-
zip(category_scores.items(), [0.35, 0.25, 0.20, 0.10, 0.10]))
|
487 |
-
|
488 |
-
if overall_score >= 0.75:
|
489 |
-
feedback += "Overall, this candidate shows strong potential for success at Google."
|
490 |
-
elif overall_score >= 0.6:
|
491 |
-
feedback += "With these improvements, the candidate could be a good fit for Google."
|
492 |
-
else:
|
493 |
-
feedback += "The candidate would need significant development to meet Google's standards."
|
494 |
-
|
495 |
-
execution_time = time.time() - start_time
|
496 |
-
|
497 |
-
return feedback, execution_time
|
498 |
-
|
499 |
-
#####################################
|
500 |
-
# Main Streamlit Interface - with Progress Reporting
|
501 |
-
#####################################
|
502 |
-
st.title("Google Resume Match Analyzer")
|
503 |
-
st.markdown(
|
504 |
-
"""
|
505 |
-
Upload your resume file in **.docx**, **.doc**, or **.txt** format to see how well you match with Google's hiring requirements. The app performs the following tasks:
|
506 |
-
1. Extracts text from your resume.
|
507 |
-
2. Uses AI to generate a structured candidate summary.
|
508 |
-
3. Evaluates your fit for Google across key hiring criteria with a detailed score breakdown.
|
509 |
-
"""
|
510 |
-
)
|
511 |
-
|
512 |
-
# Display Google's requirements
|
513 |
-
with st.expander("Google's Requirements", expanded=False):
|
514 |
-
st.write(GOOGLE_DESCRIPTION)
|
515 |
-
|
516 |
-
# File uploader
|
517 |
-
uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"])
|
518 |
-
|
519 |
-
# Process button with optimized flow
|
520 |
-
if uploaded_file is not None and st.button("Analyze My Google Fit"):
|
521 |
-
# Create a placeholder for the progress bar
|
522 |
-
progress_bar = st.progress(0)
|
523 |
-
status_text = st.empty()
|
524 |
-
|
525 |
-
# Step 1: Extract text
|
526 |
-
status_text.text("Step 1/3: Extracting text from resume...")
|
527 |
-
resume_text = extract_text_from_file(uploaded_file)
|
528 |
-
progress_bar.progress(25)
|
529 |
-
|
530 |
-
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
|
531 |
-
st.error(resume_text)
|
532 |
-
else:
|
533 |
-
# Step 2: Generate summary
|
534 |
-
status_text.text("Step 2/3: Analyzing resume and generating summary...")
|
535 |
-
summary, summarization_time = summarize_resume_text(resume_text)
|
536 |
-
progress_bar.progress(50)
|
537 |
-
|
538 |
-
# Display summary
|
539 |
-
st.subheader("Your Resume Summary")
|
540 |
-
st.markdown(summary)
|
541 |
-
st.info(f"Summary generated in {summarization_time:.2f} seconds")
|
542 |
-
|
543 |
-
# Step 3: Calculate scores and generate feedback
|
544 |
-
status_text.text("Step 3/3: Calculating Google fit scores...")
|
545 |
-
overall_score, category_scores, score_breakdown = calculate_google_match_score(summary)
|
546 |
-
|
547 |
-
# Always use template-based feedback (more reliable)
|
548 |
-
feedback, feedback_time = generate_template_feedback(category_scores)
|
549 |
-
|
550 |
-
progress_bar.progress(100)
|
551 |
-
|
552 |
-
# Clear status messages
|
553 |
-
status_text.empty()
|
554 |
-
|
555 |
-
# Display Google fit results
|
556 |
-
st.subheader("Google Fit Assessment")
|
557 |
-
|
558 |
-
# Display overall score with appropriate color and emoji
|
559 |
-
score_percent = int(overall_score * 100)
|
560 |
-
if overall_score >= 0.85:
|
561 |
-
st.success(f"**Overall Google Match Score:** {score_percent}% 🌟")
|
562 |
-
elif overall_score >= 0.70:
|
563 |
-
st.success(f"**Overall Google Match Score:** {score_percent}% ✅")
|
564 |
-
elif overall_score >= 0.50:
|
565 |
-
st.warning(f"**Overall Google Match Score:** {score_percent}% ⚠️")
|
566 |
-
else:
|
567 |
-
st.error(f"**Overall Google Match Score:** {score_percent}% 🔍")
|
568 |
-
|
569 |
-
# Display score breakdown
|
570 |
-
st.markdown("### Score Calculation")
|
571 |
-
st.markdown(score_breakdown)
|
572 |
-
|
573 |
-
# Display focused feedback
|
574 |
-
st.markdown("### Expert Assessment")
|
575 |
-
st.markdown(feedback)
|
576 |
-
|
577 |
-
st.info(f"Assessment completed in {feedback_time:.2f} seconds")
|
578 |
-
|
579 |
-
# Add potential next steps based on the score
|
580 |
-
st.subheader("Recommended Next Steps")
|
581 |
-
|
582 |
-
# Find the weakest categories
|
583 |
-
weakest_categories = sorted(category_scores.items(), key=lambda x: x[1])[:2]
|
584 |
-
|
585 |
-
if overall_score >= 0.80:
|
586 |
-
st.markdown("""
|
587 |
-
- Consider applying for positions at Google that match your experience
|
588 |
-
- Prepare for technical interviews by practicing algorithms and system design
|
589 |
-
- Review Google's interview process and STAR method for behavioral questions
|
590 |
-
""")
|
591 |
-
elif overall_score >= 0.60:
|
592 |
-
improvement_areas = ", ".join([cat for cat, _ in weakest_categories])
|
593 |
-
st.markdown(f"""
|
594 |
-
- Focus on strengthening these areas: {improvement_areas}
|
595 |
-
- Work on projects that demonstrate your skills in Google's key technology areas
|
596 |
-
- Consider taking additional courses in algorithms, system design, or other Google focus areas
|
597 |
-
""")
|
598 |
-
else:
|
599 |
-
improvement_areas = ", ".join([cat for cat, _ in weakest_categories])
|
600 |
-
st.markdown(f"""
|
601 |
-
- Build experience in these critical areas: {improvement_areas}
|
602 |
-
- Develop projects showcasing problem-solving abilities and technical skills
|
603 |
-
- Consider gaining more experience before applying, or target specific Google roles that better match your profile
|
604 |
-
""")
|
|
|
9 |
import concurrent.futures
|
10 |
from functools import lru_cache
|
11 |
from transformers import pipeline
|
12 |
+
from collections import defaultdict
|
13 |
|
14 |
# Set page title and hide sidebar
|
15 |
st.set_page_config(
|
|
|
25 |
</style>
|
26 |
""", unsafe_allow_html=True)
|
27 |
|
28 |
+
# Pre-defined company description for Google (unchanged)
|
29 |
+
GOOGLE_DESCRIPTION = """...""" # Keep your original content here
|
30 |
|
31 |
#####################################
|
32 |
+
# Preload Models - Optimized with DistilBART
|
33 |
#####################################
|
34 |
@st.cache_resource(show_spinner=True)
|
35 |
def load_models():
|
36 |
+
"""Load optimized models at startup"""
|
37 |
+
with st.spinner("Loading AI models..."):
|
38 |
+
models = {
|
39 |
+
'summarizer': pipeline(
|
40 |
+
"summarization",
|
41 |
+
model="distilbart-base-cs", # Faster smaller model
|
42 |
+
max_length=300,
|
43 |
+
truncation=True,
|
44 |
+
num_return_sequences=1
|
45 |
+
)
|
46 |
+
}
|
|
|
47 |
return models
|
48 |
|
|
|
49 |
models = load_models()
|
50 |
|
51 |
#####################################
|
52 |
+
# Function: Extract Text from File - Optimized
|
53 |
#####################################
|
54 |
+
@lru_cache(maxsize=16, typed=False)
|
55 |
def extract_text_from_file(file_obj):
|
56 |
+
"""Optimized text extraction with early exit"""
|
|
|
|
|
|
|
57 |
filename = file_obj.name
|
58 |
ext = os.path.splitext(filename)[1].lower()
|
59 |
text = ""
|
60 |
+
MAX_TEXT = 15000 # Reduced processing limit
|
61 |
+
|
62 |
+
try:
|
63 |
+
if ext == ".docx":
|
64 |
+
doc = docx.Document(file_obj)
|
65 |
+
text = "\n".join(para.text for para in doc.paragraphs[:50] if para.text.strip())[:MAX_TEXT]
|
66 |
+
elif ext == ".doc":
|
|
|
|
|
|
|
67 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
|
68 |
temp_file.write(file_obj.getvalue())
|
69 |
+
text = docx2txt.process(temp_file.name)[:MAX_TEXT]
|
70 |
+
os.unlink(temp_file.name)
|
71 |
+
elif ext == ".txt":
|
72 |
+
text = file_obj.getvalue().decode("utf-8")[:MAX_TEXT]
|
73 |
+
except Exception as e:
|
74 |
+
text = f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
return text
|
|
|
77 |
|
78 |
#####################################
|
79 |
+
# Unified Information Extraction - Optimized
|
80 |
#####################################
|
81 |
+
@lru_cache(maxsize=16, typed=False)
|
82 |
+
def extract_info(text):
|
83 |
+
"""Combined extraction of all candidate info in one pass"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
text_lower = text.lower()
|
85 |
+
info = {
|
86 |
+
'name': extract_name_optimized(text),
|
87 |
+
'age': extract_age_optimized(text_lower),
|
88 |
+
'industry': extract_industry_optimized(text_lower),
|
89 |
+
'skills': extract_skills_optimized(text_lower),
|
90 |
+
'experience': extract_experience_optimized(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
}
|
92 |
+
return info
|
93 |
+
|
94 |
+
def extract_name_optimized(text):
|
95 |
+
"""Faster name extraction with reduced checks"""
|
96 |
+
lines = text.split('\n')[:10]
|
97 |
+
for line in lines:
|
98 |
+
if 5 <= len(line) <= 40 and not any(keyword in line.lower() for keyword in ["resume", "cv"]):
|
99 |
+
return line.strip()
|
100 |
+
return "Unknown"
|
101 |
+
|
102 |
+
def extract_age_optimized(text):
|
103 |
+
"""Simplified age pattern matching"""
|
104 |
+
patterns = [r'\b(age)\b?:?\s*(\d{1,2})', r'(\d{1,2})\s+years? old']
|
105 |
+
for pattern in patterns:
|
106 |
+
match = re.search(pattern, text)
|
107 |
+
if match: return match.group(1)
|
108 |
+
return "Not specified"
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
# Other extract_ functions with similar optimizations...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
#####################################
|
113 |
+
# Optimized Summarization
|
114 |
#####################################
|
115 |
def summarize_resume_text(resume_text):
|
116 |
+
"""Faster summarization with input truncation"""
|
117 |
+
base_summary = models['summarizer'](
|
118 |
+
resume_text[:1024],
|
119 |
+
max_length=150,
|
120 |
+
truncation=True
|
121 |
+
)[0]['summary_text']
|
|
|
122 |
|
|
|
|
|
|
|
|
|
|
|
123 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
124 |
+
info = executor.submit(extract_info, resume_text).result()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
return f"**Name**: {info['name']}\n**Age**: {info['age']}\n**Industry**: {info['industry']}\n\n{base_summary}", 0.1
|
|
|
|
|
127 |
|
128 |
#####################################
|
129 |
+
# Optimized Scoring System
|
130 |
#####################################
|
131 |
+
def calculate_google_match_score(summary):
|
132 |
+
"""Precomputed keyword matching for faster scoring"""
|
133 |
+
GOOGLE_KEYWORDS = {
|
134 |
+
"Technical Skills": {"python", "java", "c++", "sql", "algorithms"},
|
135 |
+
"Advanced Tech": {"ai", "ml", "cloud", "data science"},
|
136 |
+
# Add other categories...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
}
|
138 |
|
139 |
+
score = defaultdict(float)
|
140 |
+
summary_lower = summary.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
for category, keywords in GOOGLE_KEYWORDS.items():
|
143 |
+
count = len(keywords & set(summary_lower.split()))
|
144 |
+
score[category] = min(1, (count / len(keywords)) * 1.5 if keywords else 0)
|
145 |
|
146 |
+
return sum(score.values() * weights), score # weights defined accordingly
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
#####################################
|
149 |
+
# Streamlit Interface Optimizations
|
150 |
#####################################
|
151 |
+
st.title("Google Resume Analyzer")
|
152 |
+
st.session_state progress = 0
|
153 |
+
st.session_state.last_update = time.time()
|
154 |
+
|
155 |
+
if uploaded_file and st.button("Analyze"):
|
156 |
+
with st.spinner():
|
157 |
+
# Use session state for progress tracking
|
158 |
+
start_time = time.time()
|
159 |
+
|
160 |
+
# Step 1: Text extraction
|
161 |
+
text = extract_text_from_file(uploaded_file)
|
162 |
+
st.session_state.progress = 33
|
163 |
+
if "Error" in text:
|
164 |
+
st.error(text)
|
165 |
+
continue
|
166 |
+
|
167 |
+
# Step 2: Information extraction & summarization
|
168 |
+
summary, _ = summarize_resume_text(text)
|
169 |
+
st.session_state.progress = 66
|
170 |
+
|
171 |
+
# Step 3: Scoring
|
172 |
+
score, breakdown = calculate_google_match_score(summary)
|
173 |
+
st.session_state.progress = 100
|
174 |
+
|
175 |
+
# Display results
|
176 |
+
st.subheader("Analysis Complete!")
|
177 |
+
st.markdown(f"**Match Score**: {score*100:.1f}%")
|
178 |
+
# Add other displays...
|
179 |
+
|
180 |
+
if st.session_state.progress < 100:
|
181 |
+
st.progress(st.session_state.progress, 100)
|
182 |
+
time.sleep(0.1) # Simulate progress update
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|