Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,45 @@
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
import re
|
4 |
-
import time
|
5 |
import streamlit as st
|
6 |
import docx
|
7 |
import textract
|
8 |
from sentence_transformers import SentenceTransformer, util
|
9 |
from transformers import pipeline
|
|
|
10 |
|
11 |
#####################################
|
12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
#####################################
|
14 |
def extract_text_from_file(file_obj):
|
15 |
"""
|
@@ -23,67 +53,70 @@ def extract_text_from_file(file_obj):
|
|
23 |
if ext == ".docx":
|
24 |
try:
|
25 |
document = docx.Document(file_obj)
|
26 |
-
|
|
|
27 |
except Exception as e:
|
28 |
text = f"Error processing DOCX file: {e}"
|
29 |
elif ext == ".doc":
|
30 |
try:
|
31 |
-
#
|
32 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
|
33 |
tmp.write(file_obj.read())
|
34 |
-
tmp.flush()
|
35 |
tmp_filename = tmp.name
|
36 |
text = textract.process(tmp_filename).decode("utf-8")
|
|
|
|
|
37 |
except Exception as e:
|
38 |
text = f"Error processing DOC file: {e}"
|
39 |
-
finally:
|
40 |
-
try:
|
41 |
-
os.remove(tmp_filename)
|
42 |
-
except Exception:
|
43 |
-
pass
|
44 |
else:
|
45 |
text = "Unsupported file type."
|
46 |
return text
|
47 |
|
48 |
#####################################
|
49 |
-
# Function: Summarize Resume Text
|
50 |
#####################################
|
51 |
-
|
52 |
-
def load_summarizer():
|
53 |
-
"""
|
54 |
-
Loads the summarization pipeline using a transformer model.
|
55 |
-
We use the model "google/pegasus-xsum" for summarization.
|
56 |
-
"""
|
57 |
-
return pipeline("summarization", model="google/pegasus-xsum")
|
58 |
-
|
59 |
-
def summarize_resume_text(resume_text):
|
60 |
"""
|
61 |
-
Generates a concise summary of the resume text using the summarization model.
|
62 |
-
If the resume text is very long, we trim it to avoid hitting the model's maximum input size.
|
63 |
"""
|
64 |
-
summarizer =
|
65 |
|
66 |
-
#
|
67 |
-
|
|
|
|
|
68 |
if len(resume_text) > max_input_length:
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
# Generate summary
|
73 |
-
summary_result = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)
|
74 |
-
candidate_summary = summary_result[0]['summary_text']
|
75 |
return candidate_summary
|
76 |
|
77 |
#####################################
|
78 |
-
# Function: Compare Candidate Summary to Company Prompt
|
79 |
#####################################
|
80 |
-
def compute_suitability(candidate_summary, company_prompt,
|
81 |
"""
|
82 |
Compute the cosine similarity between candidate summary and company prompt embeddings.
|
83 |
Returns a score in the range [0, 1].
|
84 |
"""
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
cosine_sim = util.cos_sim(candidate_embed, company_embed)
|
88 |
score = float(cosine_sim.item())
|
89 |
return score
|
@@ -91,95 +124,128 @@ def compute_suitability(candidate_summary, company_prompt, model):
|
|
91 |
#####################################
|
92 |
# Main Resume Processing Logic
|
93 |
#####################################
|
94 |
-
def process_resume(file_obj):
|
95 |
"""
|
96 |
Extracts text from the uploaded file and then generates a summary
|
97 |
using a text summarization model.
|
98 |
"""
|
99 |
-
st.
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
# Check if resume_text is valid
|
103 |
-
if not resume_text or resume_text.strip() == "":
|
104 |
-
st.error("No text could be extracted. Please check your resume file!")
|
105 |
-
return ""
|
106 |
-
|
107 |
-
st.info(f"Text extraction complete. Extracted {len(resume_text)} characters.")
|
108 |
-
time.sleep(0.5) # slight delay to let the user read the info message
|
109 |
-
|
110 |
-
st.info("Generating candidate summary, please wait...")
|
111 |
-
candidate_summary = summarize_resume_text(resume_text)
|
112 |
-
st.info("Candidate summary generated.")
|
113 |
return candidate_summary
|
114 |
|
115 |
#####################################
|
116 |
-
#
|
117 |
-
#####################################
|
118 |
-
@st.cache_resource(show_spinner=False)
|
119 |
-
def load_sbert_model():
|
120 |
-
# This loads the Sentence-BERT model "all-MiniLM-L6-v2"
|
121 |
-
return SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
122 |
-
|
123 |
-
# Load Sentence-BERT model for computing semantic similarity.
|
124 |
-
sbert_model = load_sbert_model()
|
125 |
-
|
126 |
-
#####################################
|
127 |
-
# Streamlit Interface
|
128 |
#####################################
|
129 |
-
|
130 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
"""
|
132 |
-
|
133 |
-
1. Extracts text from the resume.
|
134 |
-
2. Uses a transformer-based text summarization model (**google/pegasus-xsum**) to generate a concise candidate summary.
|
135 |
-
3. Compares the candidate summary with a company profile (using Sentence-BERT) to produce a suitability score.
|
136 |
-
"""
|
137 |
-
)
|
138 |
-
|
139 |
-
# File uploader for resume
|
140 |
-
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
|
141 |
|
142 |
-
#
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
st.subheader("Candidate Summary")
|
153 |
-
st.markdown(candidate_summary)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
#
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
"Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture "
|
162 |
-
"of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology."
|
163 |
-
)
|
164 |
|
165 |
-
#
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
if
|
174 |
-
|
175 |
-
st.error("Please process the resume first!")
|
176 |
-
else:
|
177 |
-
candidate_summary = st.session_state["candidate_summary"]
|
178 |
-
if candidate_summary.strip() == "":
|
179 |
-
st.error("Candidate summary is empty; please check your resume file.")
|
180 |
-
elif company_prompt.strip() == "":
|
181 |
-
st.error("Please enter the company information.")
|
182 |
-
else:
|
183 |
-
with st.spinner("Computing suitability score..."):
|
184 |
-
score = compute_suitability(candidate_summary, company_prompt, sbert_model)
|
185 |
-
st.success(f"Suitability Score: {score:.2f} (range 0 to 1)")
|
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
import re
|
|
|
4 |
import streamlit as st
|
5 |
import docx
|
6 |
import textract
|
7 |
from sentence_transformers import SentenceTransformer, util
|
8 |
from transformers import pipeline
|
9 |
+
import threading
|
10 |
|
11 |
#####################################
|
12 |
+
# Load Models - Optimized with Threading
|
13 |
+
#####################################
|
14 |
+
@st.cache_resource(show_spinner=False)
|
15 |
+
def load_models():
|
16 |
+
"""
|
17 |
+
Load all models in parallel using threading to speed up initialization
|
18 |
+
"""
|
19 |
+
models = {}
|
20 |
+
|
21 |
+
def load_summarizer_thread():
|
22 |
+
models['summarizer'] = pipeline("summarization", model="google/pegasus-xsum", device=0 if st.session_state.get('use_gpu', False) else -1)
|
23 |
+
|
24 |
+
def load_sbert_thread():
|
25 |
+
models['sbert'] = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", device='cuda' if st.session_state.get('use_gpu', False) else 'cpu')
|
26 |
+
|
27 |
+
# Start threads to load models in parallel
|
28 |
+
threads = [
|
29 |
+
threading.Thread(target=load_summarizer_thread),
|
30 |
+
threading.Thread(target=load_sbert_thread)
|
31 |
+
]
|
32 |
+
|
33 |
+
for thread in threads:
|
34 |
+
thread.start()
|
35 |
+
|
36 |
+
for thread in threads:
|
37 |
+
thread.join()
|
38 |
+
|
39 |
+
return models
|
40 |
+
|
41 |
+
#####################################
|
42 |
+
# Function: Extract Text from File - Optimized
|
43 |
#####################################
|
44 |
def extract_text_from_file(file_obj):
|
45 |
"""
|
|
|
53 |
if ext == ".docx":
|
54 |
try:
|
55 |
document = docx.Document(file_obj)
|
56 |
+
# Use a list comprehension and join for better performance
|
57 |
+
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
|
58 |
except Exception as e:
|
59 |
text = f"Error processing DOCX file: {e}"
|
60 |
elif ext == ".doc":
|
61 |
try:
|
62 |
+
# Use a context manager for better file handling
|
63 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
|
64 |
tmp.write(file_obj.read())
|
|
|
65 |
tmp_filename = tmp.name
|
66 |
text = textract.process(tmp_filename).decode("utf-8")
|
67 |
+
# Clean up the temporary file immediately
|
68 |
+
os.unlink(tmp_filename)
|
69 |
except Exception as e:
|
70 |
text = f"Error processing DOC file: {e}"
|
|
|
|
|
|
|
|
|
|
|
71 |
else:
|
72 |
text = "Unsupported file type."
|
73 |
return text
|
74 |
|
75 |
#####################################
|
76 |
+
# Function: Summarize Resume Text - Optimized
|
77 |
#####################################
|
78 |
+
def summarize_resume_text(resume_text, models):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
"""
|
80 |
+
Generates a concise summary of the resume text using the pre-loaded summarization model.
|
|
|
81 |
"""
|
82 |
+
summarizer = models['summarizer']
|
83 |
|
84 |
+
# Optimize text processing - only use essential text
|
85 |
+
# Break text into chunks and summarize important parts
|
86 |
+
max_input_length = 1024 # PEGASUS-XSUM limit
|
87 |
+
|
88 |
if len(resume_text) > max_input_length:
|
89 |
+
# Instead of simple trimming, extract key sections
|
90 |
+
chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
|
91 |
+
summaries = []
|
92 |
+
|
93 |
+
for chunk in chunks:
|
94 |
+
chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
|
95 |
+
summaries.append(chunk_summary)
|
96 |
+
|
97 |
+
candidate_summary = " ".join(summaries)
|
98 |
+
# Summarize again if combined summary is too long
|
99 |
+
if len(candidate_summary) > max_input_length:
|
100 |
+
candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text']
|
101 |
+
else:
|
102 |
+
candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
|
103 |
|
|
|
|
|
|
|
104 |
return candidate_summary
|
105 |
|
106 |
#####################################
|
107 |
+
# Function: Compare Candidate Summary to Company Prompt - Optimized
|
108 |
#####################################
|
109 |
+
def compute_suitability(candidate_summary, company_prompt, models):
|
110 |
"""
|
111 |
Compute the cosine similarity between candidate summary and company prompt embeddings.
|
112 |
Returns a score in the range [0, 1].
|
113 |
"""
|
114 |
+
sbert_model = models['sbert']
|
115 |
+
|
116 |
+
# Encode texts in parallel (if supported by model)
|
117 |
+
embeddings = sbert_model.encode([candidate_summary, company_prompt], convert_to_tensor=True)
|
118 |
+
candidate_embed, company_embed = embeddings[0], embeddings[1]
|
119 |
+
|
120 |
cosine_sim = util.cos_sim(candidate_embed, company_embed)
|
121 |
score = float(cosine_sim.item())
|
122 |
return score
|
|
|
124 |
#####################################
|
125 |
# Main Resume Processing Logic
|
126 |
#####################################
|
127 |
+
def process_resume(file_obj, models):
|
128 |
"""
|
129 |
Extracts text from the uploaded file and then generates a summary
|
130 |
using a text summarization model.
|
131 |
"""
|
132 |
+
with st.status("Processing resume...") as status:
|
133 |
+
status.update(label="Extracting text from resume...")
|
134 |
+
resume_text = extract_text_from_file(file_obj)
|
135 |
+
|
136 |
+
# Check if resume_text is valid
|
137 |
+
if not resume_text or resume_text.strip() == "":
|
138 |
+
status.update(label="Error: No text could be extracted", state="error")
|
139 |
+
return ""
|
140 |
+
|
141 |
+
status.update(label=f"Extracted {len(resume_text)} characters. Generating summary...")
|
142 |
+
|
143 |
+
candidate_summary = summarize_resume_text(resume_text, models)
|
144 |
+
status.update(label="Processing complete!", state="complete")
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
return candidate_summary
|
147 |
|
148 |
#####################################
|
149 |
+
# Streamlit Interface - Optimized
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
#####################################
|
151 |
+
def main():
|
152 |
+
st.set_page_config(page_title="Resume Analyzer", layout="wide")
|
153 |
+
|
154 |
+
# Initialize session state for GPU usage
|
155 |
+
if 'use_gpu' not in st.session_state:
|
156 |
+
st.session_state.use_gpu = False
|
157 |
+
|
158 |
+
# Only show sidebar settings on first run
|
159 |
+
with st.sidebar:
|
160 |
+
st.title("Settings")
|
161 |
+
if st.checkbox("Use GPU (if available)", value=st.session_state.use_gpu):
|
162 |
+
st.session_state.use_gpu = True
|
163 |
+
else:
|
164 |
+
st.session_state.use_gpu = False
|
165 |
+
|
166 |
+
st.info("Using GPU can significantly speed up model inference if available")
|
167 |
+
|
168 |
+
# Load models - this happens only once due to caching
|
169 |
+
with st.spinner("Loading AI models..."):
|
170 |
+
models = load_models()
|
171 |
+
|
172 |
+
st.title("Resume Analyzer and Company Suitability Checker")
|
173 |
+
st.markdown(
|
174 |
+
"""
|
175 |
+
Upload your resume file in **.doc** or **.docx** format. The app performs the following tasks:
|
176 |
+
1. Extracts text from the resume.
|
177 |
+
2. Uses a transformer-based model to generate a concise candidate summary.
|
178 |
+
3. Compares the candidate summary with a company profile to produce a suitability score.
|
179 |
"""
|
180 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
+
# Use columns for better layout
|
183 |
+
col1, col2 = st.columns([1, 1])
|
184 |
+
|
185 |
+
with col1:
|
186 |
+
# File uploader for resume
|
187 |
+
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
|
188 |
+
|
189 |
+
# Button to process the resume
|
190 |
+
if st.button("Process Resume", type="primary", use_container_width=True):
|
191 |
+
if uploaded_file is None:
|
192 |
+
st.error("Please upload a resume file first.")
|
193 |
+
else:
|
194 |
+
candidate_summary = process_resume(uploaded_file, models)
|
195 |
+
if candidate_summary: # only if summary is generated
|
196 |
+
st.session_state["candidate_summary"] = candidate_summary
|
197 |
+
|
198 |
+
# Display candidate summary if available
|
199 |
+
if "candidate_summary" in st.session_state:
|
200 |
st.subheader("Candidate Summary")
|
201 |
+
st.markdown(st.session_state["candidate_summary"])
|
202 |
+
|
203 |
+
with col2:
|
204 |
+
# Pre-defined company prompt for Google LLC.
|
205 |
+
default_company_prompt = (
|
206 |
+
"Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, "
|
207 |
+
"artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong "
|
208 |
+
"problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming "
|
209 |
+
"languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. "
|
210 |
+
"Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture "
|
211 |
+
"of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology."
|
212 |
+
)
|
213 |
|
214 |
+
# Company prompt text area.
|
215 |
+
company_prompt = st.text_area(
|
216 |
+
"Enter company details:",
|
217 |
+
value=default_company_prompt,
|
218 |
+
height=150,
|
219 |
+
)
|
|
|
|
|
|
|
220 |
|
221 |
+
# Button to compute the suitability score.
|
222 |
+
if st.button("Compute Suitability Score", type="primary", use_container_width=True):
|
223 |
+
if "candidate_summary" not in st.session_state:
|
224 |
+
st.error("Please process the resume first!")
|
225 |
+
else:
|
226 |
+
candidate_summary = st.session_state["candidate_summary"]
|
227 |
+
if candidate_summary.strip() == "":
|
228 |
+
st.error("Candidate summary is empty; please check your resume file.")
|
229 |
+
elif company_prompt.strip() == "":
|
230 |
+
st.error("Please enter the company information.")
|
231 |
+
else:
|
232 |
+
with st.spinner("Computing suitability score..."):
|
233 |
+
score = compute_suitability(candidate_summary, company_prompt, models)
|
234 |
+
|
235 |
+
# Display score with a progress bar for visual feedback
|
236 |
+
st.success(f"Suitability Score: {score:.2f} (range 0 to 1)")
|
237 |
+
st.progress(score)
|
238 |
+
|
239 |
+
# Add interpretation of score
|
240 |
+
if score > 0.75:
|
241 |
+
st.info("Excellent match! Your profile appears very well suited for this company.")
|
242 |
+
elif score > 0.5:
|
243 |
+
st.info("Good match. Your profile aligns with many aspects of the company's requirements.")
|
244 |
+
elif score > 0.3:
|
245 |
+
st.info("Moderate match. Consider highlighting more relevant skills or experience.")
|
246 |
+
else:
|
247 |
+
st.info("Low match. Your profile may need significant adjustments to better align with this company.")
|
248 |
|
249 |
+
|
250 |
+
if __name__ == "__main__":
|
251 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|