import os import io import streamlit as st import docx import time import tempfile import torch import transformers from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline import docx2txt # Set page title and hide sidebar st.set_page_config( page_title="Resume Analyzer and Company Suitability Checker", initial_sidebar_state="collapsed" ) # Hide sidebar completely with custom CSS st.markdown(""" """, unsafe_allow_html=True) ##################################### # Optimized Model Loading ##################################### @st.cache_resource(show_spinner=True) def load_models(): """Load models at startup with optimizations""" with st.spinner("Loading AI models... This may take a minute on first run."): models = {} # Use half-precision for all models to reduce memory usage and increase speed torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 device = 0 if torch.cuda.is_available() else -1 # Use GPU if available # Load a smaller summarization model models['summarizer'] = pipeline( "summarization", model="facebook/bart-large-cnn", # Faster model with good summarization quality torch_dtype=torch_dtype, device=device ) # Use a smaller and faster text generation model models['text_generator'] = pipeline( "text-generation", model="distilgpt2", # Much smaller than GPT-2 torch_dtype=torch_dtype, device=device ) return models # Preload models immediately when app starts models = load_models() ##################################### # Function: Extract Text from File - Optimized ##################################### @st.cache_data def extract_text_from_file(file_content, file_name): """ Extract text from .doc or .docx files. Returns the extracted text or an error message if extraction fails. """ ext = os.path.splitext(file_name)[1].lower() text = "" if ext == ".docx": try: # Use BytesIO to avoid disk I/O doc_file = io.BytesIO(file_content) document = docx.Document(doc_file) text = "\n".join(para.text for para in document.paragraphs if para.text.strip()) except Exception as e: text = f"Error processing DOCX file: {e}" elif ext == ".doc": try: # For .doc files, we need to save to a temp file with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file: temp_file.write(file_content) temp_path = temp_file.name # Use docx2txt which is generally faster try: text = docx2txt.process(temp_path) except Exception: text = "Could not process .doc file. Please convert to .docx format." # Clean up temp file os.unlink(temp_path) except Exception as e: text = f"Error processing DOC file: {e}" else: text = "Unsupported file type. Please upload a .doc or .docx file." return text ##################################### # Function: Summarize Resume Text - Optimized ##################################### def summarize_resume_text(resume_text, models): """ Generates a concise summary of the resume text using an optimized approach. """ start_time = time.time() summarizer = models['summarizer'] # Truncate text to avoid multiple passes max_input_length = 1024 # Model limit truncated_text = resume_text[:max_input_length] if len(resume_text) > max_input_length else resume_text # Get a concise summary in one pass candidate_summary = summarizer( truncated_text, max_length=150, min_length=30, do_sample=False )[0]['summary_text'] execution_time = time.time() - start_time return candidate_summary, execution_time ##################################### # Function: Generate Suitability Assessment - Optimized ##################################### def generate_suitability_assessment(candidate_summary, company_prompt, models): """ Generate a suitability assessment using text generation - optimized. """ start_time = time.time() text_generator = models['text_generator'] # Create a shorter, more focused prompt prompt = f"""Resume: {candidate_summary[:300]}... Company: {company_prompt[:300]}... Suitability Assessment: This candidate""" # Generate shorter text for faster completion max_length = 50 + len(prompt.split()) generated_text = text_generator( prompt, max_length=max_length, num_return_sequences=1, temperature=0.7, top_p=0.9, do_sample=True )[0]['generated_text'] # Extract only the assessment part assessment = generated_text[len(prompt):].strip() # Determine a numerical score (simplified for better performance) positive_words = ['excellent', 'perfect', 'great', 'good', 'strong', 'ideal', 'qualified', 'aligns', 'matches', 'suitable'] negative_words = ['poor', 'weak', 'bad', 'insufficient', 'inadequate', 'not a good fit', 'misaligned', 'lacks'] assessment_lower = assessment.lower() # Calculate score positive_count = sum(1 for word in positive_words if word in assessment_lower) negative_count = sum(1 for word in negative_words if word in assessment_lower) total = positive_count + negative_count if total > 0: score = 0.5 + 0.4 * (positive_count - negative_count) / total else: score = 0.5 # Clamp the score score = max(0.1, min(0.9, score)) execution_time = time.time() - start_time return assessment, score, execution_time ##################################### # Main Streamlit Interface ##################################### st.title("Resume Analyzer and Company Suitability Checker") st.markdown( """ Upload your resume file in **.doc** or **.docx** format. The app performs the following tasks: 1. Extracts text from the resume. 2. Uses a transformer-based model to generate a concise candidate summary. 3. Evaluates how well the candidate aligns with the company requirements. """ ) # File uploader uploaded_file = st.file_uploader("Upload your resume (.doc or .docx)", type=["doc", "docx"]) # Company description text area company_prompt = st.text_area( "Enter the company description or job requirements:", height=150, help="Enter a detailed description of the company culture, role requirements, and desired skills.", ) # Process button if uploaded_file is not None and company_prompt and st.button("Analyze Resume"): with st.spinner("Processing..."): # Extract text from resume with caching resume_text = extract_text_from_file(uploaded_file.getvalue(), uploaded_file.name) if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .doc or .docx file.": st.error(resume_text) else: # Add a progress bar progress_bar = st.progress(0) # Generate summary summary, summarization_time = summarize_resume_text(resume_text, models) progress_bar.progress(50) # Display summary st.subheader("Candidate Summary") st.write(summary) st.info(f"Summarization completed in {summarization_time:.2f} seconds") # Generate suitability assessment assessment, estimated_score, generation_time = generate_suitability_assessment(summary, company_prompt, models) progress_bar.progress(100) # Display assessment st.subheader("Suitability Assessment") st.write(assessment) st.markdown(f"**Estimated Matching Score:** {estimated_score:.2%}") st.info(f"Assessment generated in {generation_time:.2f} seconds") # Provide interpretation based on estimated score if estimated_score >= 0.85: st.success("Excellent match! This candidate's profile is strongly aligned with the company requirements.") elif estimated_score >= 0.70: st.success("Good match! This candidate shows strong potential for the position.") elif estimated_score >= 0.50: st.warning("Moderate match. The candidate meets some requirements but there may be gaps.") else: st.error("Low match. The candidate's profile may not align well with the requirements.")