import os import io import streamlit as st import docx from transformers import pipeline import time # Set page title and hide sidebar st.set_page_config( page_title="Resume Analyzer and Company Suitability Checker", initial_sidebar_state="collapsed" ) # Hide sidebar completely with custom CSS st.markdown(""" """, unsafe_allow_html=True) ##################################### # Preload Models ##################################### @st.cache_resource(show_spinner=True) def load_models(): """Load models at startup""" with st.spinner("Loading AI models... This may take a minute on first run."): models = {} # Load summarization model models['summarizer'] = pipeline("summarization", model="google/pegasus-xsum") # Load text generation model for suitability assessment models['text_generator'] = pipeline("text-generation", model="gpt2") # You can use different models return models # Preload models immediately when app starts models = load_models() ##################################### # Function: Extract Text from File ##################################### def extract_text_from_file(file_obj): """ Extract text from .docx files. Returns the extracted text or an error message if extraction fails. """ filename = file_obj.name ext = os.path.splitext(filename)[1].lower() text = "" if ext == ".docx": try: document = docx.Document(file_obj) text = "\n".join(para.text for para in document.paragraphs if para.text.strip()) except Exception as e: text = f"Error processing DOCX file: {e}" elif ext == ".txt": try: text = file_obj.getvalue().decode("utf-8") except Exception as e: text = f"Error processing TXT file: {e}" else: text = "Unsupported file type. Please upload a .docx or .txt file." return text ##################################### # Function: Summarize Resume Text ##################################### def summarize_resume_text(resume_text, models): """ Generates a concise summary of the resume text using the selected summarization model. """ start_time = time.time() summarizer = models['summarizer'] # Handle long text max_input_length = 1024 # Model limit if len(resume_text) > max_input_length: # Process in chunks if text is too long chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)] summaries = [] for chunk in chunks: chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text'] summaries.append(chunk_summary) candidate_summary = " ".join(summaries) if len(candidate_summary) > max_input_length: candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text'] else: candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text'] execution_time = time.time() - start_time return candidate_summary, execution_time ##################################### # Function: Generate Suitability Assessment ##################################### def generate_suitability_assessment(candidate_summary, company_prompt, models): """ Generate a suitability assessment using text generation instead of similarity. Returns the generated assessment text and execution time. """ start_time = time.time() text_generator = models['text_generator'] # Create a prompt for the text generation model prompt = f""" Resume Summary: {candidate_summary} Company Description: {company_prompt} Suitability Assessment: This candidate is a""" # Generate text max_length = 80 + len(prompt.split()) # Limit output length generated_text = text_generator( prompt, max_length=max_length, num_return_sequences=1, temperature=0.7, top_p=0.9, do_sample=True )[0]['generated_text'] # Extract only the assessment part (after the prompt) assessment = generated_text[len(prompt):].strip() # Determine a numerical score from the text # This is a simplified approach - we're looking for positive and negative words positive_words = ['excellent', 'perfect', 'great', 'good', 'strong', 'ideal', 'qualified'] negative_words = ['poor', 'weak', 'bad', 'insufficient', 'inadequate', 'not a good'] assessment_lower = assessment.lower() # Simple heuristic for score estimation score = 0.5 # Default middle score for word in positive_words: if word in assessment_lower: score += 0.1 # Increase score for positive words for word in negative_words: if word in assessment_lower: score -= 0.1 # Decrease score for negative words # Clamp the score between 0 and 1 score = max(0.1, min(0.9, score)) execution_time = time.time() - start_time return assessment, score, execution_time ##################################### # Main Streamlit Interface ##################################### st.title("Resume Analyzer and Company Suitability Checker") st.markdown( """ Upload your resume file in **.docx** or **.txt** format. The app performs the following tasks: 1. Extracts text from the resume. 2. Uses a transformer-based model to generate a concise candidate summary. 3. Uses text generation to assess the candidate's suitability for the company. """ ) # File uploader uploaded_file = st.file_uploader("Upload your resume (.docx or .txt)", type=["docx", "txt"]) # Company description text area company_prompt = st.text_area( "Enter the company description or job requirements:", height=150, help="Enter a detailed description of the company culture, role requirements, and desired skills.", ) # Process button if uploaded_file is not None and company_prompt and st.button("Analyze Resume"): with st.spinner("Processing..."): # Extract text from resume resume_text = extract_text_from_file(uploaded_file) if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx or .txt file.": st.error(resume_text) else: # Generate summary summary, summarization_time = summarize_resume_text(resume_text, models) # Display summary st.subheader("Candidate Summary") st.write(summary) st.info(f"Summarization completed in {summarization_time:.2f} seconds") # Generate suitability assessment with text generation assessment, estimated_score, generation_time = generate_suitability_assessment(summary, company_prompt, models) # Display assessment st.subheader("Suitability Assessment") st.write(assessment) st.markdown(f"**Estimated Matching Score:** {estimated_score:.2%}") st.info(f"Assessment generated in {generation_time:.2f} seconds") # Provide interpretation based on estimated score if estimated_score >= 0.85: st.success("Excellent match! This candidate's profile is strongly aligned with the company requirements.") elif estimated_score >= 0.70: st.success("Good match! This candidate shows strong potential for the position.") elif estimated_score >= 0.50: st.warning("Moderate match. The candidate meets some requirements but there may be gaps.") else: st.error("Low match. The candidate's profile may not align well with the requirements.")