import os import tempfile import streamlit as st import docx import textract from transformers import pipeline import threading import numpy as np ##################################### # Load Models - Optimized with Threading ##################################### @st.cache_resource(show_spinner=False) def load_models(): """ Load all models in parallel using threading to speed up initialization """ models = {} def load_summarizer_thread(): models['summarizer'] = pipeline("summarization", model="google/pegasus-xsum", device=0 if st.session_state.get('use_gpu', False) else -1) def load_similarity_thread(): # Using sentence-similarity pipeline instead of SentenceTransformer models['similarity'] = pipeline("sentence-similarity", model="sentence-transformers/all-MiniLM-L6-v2", device=0 if st.session_state.get('use_gpu', False) else -1) # Start threads to load models in parallel threads = [ threading.Thread(target=load_summarizer_thread), threading.Thread(target=load_similarity_thread) ] for thread in threads: thread.start() for thread in threads: thread.join() return models ##################################### # Function: Extract Text from File - Optimized ##################################### def extract_text_from_file(file_obj): """ Extract text from .doc and .docx files. Returns the extracted text or an error message if extraction fails. """ filename = file_obj.name ext = os.path.splitext(filename)[1].lower() text = "" if ext == ".docx": try: document = docx.Document(file_obj) # Use a list comprehension and join for better performance text = "\n".join(para.text for para in document.paragraphs if para.text.strip()) except Exception as e: text = f"Error processing DOCX file: {e}" elif ext == ".doc": try: # Use a context manager for better file handling with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp: tmp.write(file_obj.read()) tmp_filename = tmp.name text = textract.process(tmp_filename).decode("utf-8") # Clean up the temporary file immediately os.unlink(tmp_filename) except Exception as e: text = f"Error processing DOC file: {e}" else: text = "Unsupported file type." return text ##################################### # Function: Summarize Resume Text - Optimized ##################################### def summarize_resume_text(resume_text, models): """ Generates a concise summary of the resume text using the pre-loaded summarization model. """ summarizer = models['summarizer'] # Optimize text processing - only use essential text # Break text into chunks and summarize important parts max_input_length = 1024 # PEGASUS-XSUM limit if len(resume_text) > max_input_length: # Instead of simple trimming, extract key sections chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)] summaries = [] for chunk in chunks: chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text'] summaries.append(chunk_summary) candidate_summary = " ".join(summaries) # Summarize again if combined summary is too long if len(candidate_summary) > max_input_length: candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text'] else: candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text'] return candidate_summary ##################################### # Function: Compare Candidate Summary to Company Prompt - Using Pipeline ##################################### def compute_suitability(candidate_summary, company_prompt, models): """ Compute the similarity between candidate summary and company prompt using the similarity pipeline. Returns a score in the range [0, 1]. """ similarity_pipeline = models['similarity'] # The pipeline expects a document and a list of candidates to compare to result = similarity_pipeline( candidate_summary, [company_prompt] ) # Extract the similarity score from the result score = result[0]['score'] return score ##################################### # Main Resume Processing Logic ##################################### def process_resume(file_obj, models): """ Extracts text from the uploaded file and then generates a summary using a text summarization model. """ with st.status("Processing resume...") as status: status.update(label="Extracting text from resume...") resume_text = extract_text_from_file(file_obj) # Check if resume_text is valid if not resume_text or resume_text.strip() == "": status.update(label="Error: No text could be extracted", state="error") return "" status.update(label=f"Extracted {len(resume_text)} characters. Generating summary...") candidate_summary = summarize_resume_text(resume_text, models) status.update(label="Processing complete!", state="complete") return candidate_summary ##################################### # Streamlit Interface - Optimized ##################################### def main(): st.set_page_config(page_title="Resume Analyzer", layout="wide") # Initialize session state for GPU usage if 'use_gpu' not in st.session_state: st.session_state.use_gpu = False # Only show sidebar settings on first run with st.sidebar: st.title("Settings") if st.checkbox("Use GPU (if available)", value=st.session_state.use_gpu): st.session_state.use_gpu = True else: st.session_state.use_gpu = False st.info("Using GPU can significantly speed up model inference if available") # Load models - this happens only once due to caching with st.spinner("Loading AI models..."): models = load_models() st.title("Resume Analyzer and Company Suitability Checker") st.markdown( """ Upload your resume file in **.doc** or **.docx** format. The app performs the following tasks: 1. Extracts text from the resume. 2. Uses a transformer-based model to generate a concise candidate summary. 3. Compares the candidate summary with a company profile to produce a suitability score. """ ) # Use columns for better layout col1, col2 = st.columns([1, 1]) with col1: # File uploader for resume uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"]) # Button to process the resume if st.button("Process Resume", type="primary", use_container_width=True): if uploaded_file is None: st.error("Please upload a resume file first.") else: candidate_summary = process_resume(uploaded_file, models) if candidate_summary: # only if summary is generated st.session_state["candidate_summary"] = candidate_summary # Display candidate summary if available if "candidate_summary" in st.session_state: st.subheader("Candidate Summary") st.markdown(st.session_state["candidate_summary"]) with col2: # Pre-defined company prompt for Google LLC. default_company_prompt = ( "Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, " "artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong " "problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming " "languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. " "Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture " "of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology." ) # Company prompt text area. company_prompt = st.text_area( "Enter company details:", value=default_company_prompt, height=150, ) # Button to compute the suitability score. if st.button("Compute Suitability Score", type="primary", use_container_width=True): if "candidate_summary" not in st.session_state: st.error("Please process the resume first!") else: candidate_summary = st.session_state["candidate_summary"] if candidate_summary.strip() == "": st.error("Candidate summary is empty; please check your resume file.") elif company_prompt.strip() == "": st.error("Please enter the company information.") else: with st.spinner("Computing suitability score..."): score = compute_suitability(candidate_summary, company_prompt, models) # Display score with a progress bar for visual feedback st.success(f"Suitability Score: {score:.2f} (range 0 to 1)") st.progress(score) # Add interpretation of score if score > 0.75: st.info("Excellent match! Your profile appears very well suited for this company.") elif score > 0.5: st.info("Good match. Your profile aligns with many aspects of the company's requirements.") elif score > 0.3: st.info("Moderate match. Consider highlighting more relevant skills or experience.") else: st.info("Low match. Your profile may need significant adjustments to better align with this company.") if __name__ == "__main__": main()