import os import re import torch # Explicitly imported if you want to use torch directly import tempfile from io import BytesIO import streamlit as st from PIL import Image from transformers import pipeline from pdf2image import convert_from_bytes ##################################### # Load the OCR Pipeline (Uses Torch) ##################################### try: # Make sure that you're using an updated version of the transformers library (>=4.x) ocr_pipeline = pipeline("image-to-text", model="YouLiXiya/tinyllava-v1.0-1.1b-hf") st.write("Model loaded successfully!") except Exception as e: st.error(f"Error loading model: {e}") st.stop() ##################################### # Utility: Convert PDF to Images ##################################### def convert_pdf_to_images(pdf_bytes): try: images = convert_from_bytes(pdf_bytes) return images except Exception as e: st.error(f"PDF conversion error: {e}") return [] ##################################### # Pipeline: Extract Text with OCR Pipeline ##################################### def extract_text_from_file(file_obj): file_extension = os.path.splitext(file_obj.name)[1].lower() full_text = "" if file_extension == ".pdf": file_bytes = file_obj.read() images = convert_pdf_to_images(file_bytes) for img in images: result = ocr_pipeline(img) if isinstance(result, list) and "text" in result[0]: full_text += result[0]["text"] + "\n" else: try: img = Image.open(file_obj) result = ocr_pipeline(img) if isinstance(result, list) and "text" in result[0]: full_text = result[0]["text"] except Exception as e: full_text = f"Error processing image: {e}" return full_text ##################################### # Information Extraction Functions ##################################### def extract_resume_info(text): info = { "Name": None, "Age": None, "Job Experience": None, "Skills": None, "Expected Industry/Direction": None, } # Extract name, e.g., "Name: John Doe" name_match = re.search(r"[Nn]ame[:\-]\s*([A-Za-z\s]+)", text) if name_match: info["Name"] = name_match.group(1).strip() else: potential_names = re.findall(r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)+\b', text) if potential_names: info["Name"] = potential_names[0] # Extract age age_match = re.search(r"[Aa]ge[:\-]\s*(\d{1,2})", text) if age_match: info["Age"] = age_match.group(1) # Extract job experience (years) exp_match = re.search(r"(\d+)\s+(?:years|yrs)\s+(?:of\s+)?experience", text, re.IGNORECASE) if exp_match: info["Job Experience"] = exp_match.group(1) + " years" else: exp_line = re.search(r"(Experience|Background)[:\-]\s*(.*)", text, re.IGNORECASE) if exp_line: info["Job Experience"] = exp_line.group(2).strip() # Extract skills skills_match = re.search(r"[Ss]kills[:\-]\s*(.+)", text) if skills_match: skills_text = skills_match.group(1) skills = [s.strip() for s in re.split(r",|\n", skills_text) if s.strip()] info["Skills"] = skills # Extract expected industry/direction industry_match = re.search(r"(Industry|Interest|Direction)[:\-]\s*(.+)", text, re.IGNORECASE) if industry_match: info["Expected Industry/Direction"] = industry_match.group(2).strip() return info ##################################### # Candidate Comparison Function ##################################### def compare_candidate_with_company(resume_info, company_requirements): candidate_industry = resume_info.get("Expected Industry/Direction", "") candidate_keywords = set(candidate_industry.lower().split()) company_keywords = set(company_requirements.lower().split()) common = candidate_keywords.intersection(company_keywords) suitable = len(common) > 0 # Check skills matching if available if resume_info.get("Skills"): candidate_skills = {skill.lower() for skill in resume_info["Skills"]} company_skills = set(company_requirements.lower().split()) common_skills = candidate_skills.intersection(company_skills) if len(common_skills) >= 1: suitable = True return { "Common Keywords": list(common) if common else [], "Suitable": "Yes" if suitable else "No" } ##################################### # Main Processing Logic ##################################### def process_resume(file_obj, company_requirements): if file_obj is None: return None, None, None resume_text = extract_text_from_file(file_obj) resume_info = extract_resume_info(resume_text) comparison = compare_candidate_with_company(resume_info, company_requirements) return resume_text, resume_info, comparison ##################################### # Streamlit UI ##################################### st.title("Resume Extraction and Candidate Matching") st.markdown(""" This app uses an image-to-text pipeline (powered by `YouLiXiya/tinyllava-v1.0-1.1b-hf` and PyTorch) to extract details from uploaded resume files (PDF or image formats). It then parses critical candidate information and compares it against company requirements. """) uploaded_file = st.file_uploader("Upload Resume (PDF or Image)", type=["pdf", "png", "jpg", "jpeg"]) company_requirements = st.text_input("Enter Company Requirements/Criteria (e.g., industry, skills)", placeholder="Example: Technology, Python, Software Development") if st.button("Process Resume"): if uploaded_file is None: st.error("Please upload a file first.") else: with st.spinner("Processing..."): resume_text, resume_info, comparison = process_resume(uploaded_file, company_requirements) st.subheader("Extracted Resume Text") st.text_area("", resume_text, height=200) st.subheader("Parsed Resume Information") st.json(resume_info) st.subheader("Comparison with Company Requirements") st.json(comparison)