import os import io import streamlit as st import docx from transformers import pipeline import numpy as np from scipy.spatial.distance import cosine import time # Set page title st.set_page_config(page_title="Resume Analyzer and Company Suitability Checker") ##################################### # Preload Models ##################################### @st.cache_resource(show_spinner=True) def load_models(summarization_model="google/pegasus-xsum", similarity_model="sentence-transformers/all-MiniLM-L6-v2"): """Load models at startup""" with st.spinner("Loading AI models... This may take a minute on first run."): models = {} # Load summarization model models['summarizer'] = pipeline("summarization", model=summarization_model) # Load feature extraction model for similarity models['feature_extractor'] = pipeline("feature-extraction", model=similarity_model) return models # Preload models immediately when app starts models = load_models() ##################################### # Function: Extract Text from File ##################################### def extract_text_from_file(file_obj): """ Extract text from .docx files. Returns the extracted text or an error message if extraction fails. """ filename = file_obj.name ext = os.path.splitext(filename)[1].lower() text = "" if ext == ".docx": try: document = docx.Document(file_obj) text = "\n".join(para.text for para in document.paragraphs if para.text.strip()) except Exception as e: text = f"Error processing DOCX file: {e}" elif ext == ".txt": try: text = file_obj.getvalue().decode("utf-8") except Exception as e: text = f"Error processing TXT file: {e}" else: text = "Unsupported file type. Please upload a .docx or .txt file." return text ##################################### # Function: Summarize Resume Text ##################################### def summarize_resume_text(resume_text, models): """ Generates a concise summary of the resume text using the selected summarization model. """ start_time = time.time() summarizer = models['summarizer'] # Handle long text max_input_length = 1024 # Model limit if len(resume_text) > max_input_length: # Process in chunks if text is too long chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)] summaries = [] for chunk in chunks: chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text'] summaries.append(chunk_summary) candidate_summary = " ".join(summaries) if len(candidate_summary) > max_input_length: candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text'] else: candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text'] execution_time = time.time() - start_time return candidate_summary, execution_time ##################################### # Function: Compare Candidate Summary to Company Prompt ##################################### def compute_suitability(candidate_summary, company_prompt, models): """ Compute the similarity between candidate summary and company prompt. Returns a score in the range [0, 1] and execution time. """ start_time = time.time() feature_extractor = models['feature_extractor'] # Extract features (embeddings) candidate_features = feature_extractor(candidate_summary) company_features = feature_extractor(company_prompt) # Convert to numpy arrays and flatten if needed candidate_vec = np.mean(np.array(candidate_features[0]), axis=0) company_vec = np.mean(np.array(company_features[0]), axis=0) # Compute cosine similarity (1 - cosine distance) similarity = 1 - cosine(candidate_vec, company_vec) execution_time = time.time() - start_time return similarity, execution_time ##################################### # Main Streamlit Interface ##################################### st.title("Resume Analyzer and Company Suitability Checker") st.markdown( """ Upload your resume file in **.docx** or **.txt** format. The app performs the following tasks: 1. Extracts text from the resume. 2. Uses a transformer-based model to generate a concise candidate summary. 3. Compares the candidate summary with a company profile to produce a suitability score. """ ) # File uploader uploaded_file = st.file_uploader("Upload your resume (.docx or .txt)", type=["docx", "txt"]) # Company description text area company_prompt = st.text_area( "Enter the company description or job requirements:", height=150, help="Enter a detailed description of the company culture, role requirements, and desired skills.", ) # Show model selection in sidebar st.sidebar.header("Model Settings") # Model dropdowns - we're now only allowing one model of each type to be selected summarization_model = st.sidebar.selectbox( "Summarization Model", ["google/pegasus-xsum", "facebook/bart-large-cnn", "t5-small", "sshleifer/distilbart-cnn-12-6"], index=0, help="Select the model to use for summarizing the resume text." ) similarity_model = st.sidebar.selectbox( "Similarity Model", ["sentence-transformers/all-MiniLM-L6-v2", "sentence-transformers/all-mpnet-base-v2", "sentence-transformers/paraphrase-MiniLM-L3-v2", "sentence-transformers/multi-qa-mpnet-base-dot-v1"], index=0, help="Select the model to use for comparing candidate summary with company profile." ) # Reload models if changed if st.sidebar.button("Reload Models"): st.cache_resource.clear() models = load_models(summarization_model, similarity_model) st.sidebar.success("Models reloaded successfully!") # Process button if uploaded_file is not None and company_prompt and st.button("Analyze Resume"): with st.spinner("Processing..."): # Extract text from resume resume_text = extract_text_from_file(uploaded_file) if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx or .txt file.": st.error(resume_text) else: # Display extracted text with st.expander("Extracted Text"): st.text(resume_text) # Generate summary summary, summarization_time = summarize_resume_text(resume_text, models) # Display summary st.subheader("Candidate Summary") st.write(summary) st.info(f"Summarization completed in {summarization_time:.2f} seconds") # Only compute similarity if company description is provided if company_prompt: similarity_score, similarity_time = compute_suitability(summary, company_prompt, models) # Display similarity score st.subheader("Suitability Assessment") st.markdown(f"**Matching Score:** {similarity_score:.2%}") st.info(f"Similarity computation completed in {similarity_time:.2f} seconds") # Provide interpretation if similarity_score >= 0.85: st.success("Excellent match! This candidate's profile is strongly aligned with the company requirements.") elif similarity_score >= 0.70: st.success("Good match! This candidate shows strong potential for the position.") elif similarity_score >= 0.50: st.warning("Moderate match. The candidate meets some requirements but there may be gaps.") else: st.error("Low match. The candidate's profile may not align well with the requirements.")