import os import io import streamlit as st import docx import docx2txt import tempfile import time import re import pandas as pd from functools import lru_cache # Handle imports try: from transformers import pipeline has_pipeline = True except ImportError: from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM import torch has_pipeline = False st.warning("Using basic transformers functionality instead of pipeline API") # Set page title and hide sidebar st.set_page_config(page_title="Resume-Job Fit Analyzer", initial_sidebar_state="collapsed") st.markdown("""""", unsafe_allow_html=True) ##################################### # Preload Models & Helper Functions ##################################### @st.cache_resource(show_spinner=True) def load_models(): """Load models at startup""" with st.spinner("Loading AI models... This may take a minute on first run."): models = {} # Load summarization model if has_pipeline: models['summarizer'] = pipeline("summarization", model="Falconsai/text_summarization", max_length=100, truncation=True) else: try: models['summarizer_model'] = AutoModelForSeq2SeqLM.from_pretrained("Falconsai/text_summarization") models['summarizer_tokenizer'] = AutoTokenizer.from_pretrained("Falconsai/text_summarization") except Exception as e: st.error(f"Error loading summarization model: {e}") models['summarizer_model'] = models['summarizer_tokenizer'] = None # Load evaluation model if has_pipeline: models['evaluator'] = pipeline("sentiment-analysis", model="CR7CAD/RobertaFinetuned") else: try: models['evaluator_model'] = AutoModelForSequenceClassification.from_pretrained("CR7CAD/RobertaFinetuned") models['evaluator_tokenizer'] = AutoTokenizer.from_pretrained("CR7CAD/RobertaFinetuned") except Exception as e: st.error(f"Error loading sentiment model: {e}") models['evaluator_model'] = models['evaluator_tokenizer'] = None return models def summarize_text(text, models, max_length=100): """Summarize text using available models with fallbacks""" # Truncate input to prevent issues with long texts input_text = text[:1024] # Try pipeline first if has_pipeline and 'summarizer' in models: try: return models['summarizer'](input_text)[0]['summary_text'] except Exception as e: st.warning(f"Error in pipeline summarization: {e}") # Try manual model if 'summarizer_model' in models and 'summarizer_tokenizer' in models and models['summarizer_model']: try: tokenizer = models['summarizer_tokenizer'] model = models['summarizer_model'] inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024) summary_ids = model.generate(inputs.input_ids, max_length=max_length, min_length=30, num_beams=4, early_stopping=True) return tokenizer.decode(summary_ids[0], skip_special_tokens=True) except Exception as e: st.warning(f"Error in manual summarization: {e}") # Fallback to basic summarization return basic_summarize(text, max_length) def basic_summarize(text, max_length=100): """Basic extractive text summarization""" sentences = re.split(r'(?= 4: score = 1.0 / (i + 1) - (0.01 * max(0, len(sentence.split()) - 20)) scored_sentences.append((score, sentence)) # Get top sentences scored_sentences.sort(reverse=True) summary_sentences = [] current_length = 0 for _, sentence in scored_sentences: if current_length + len(sentence.split()) <= max_length: summary_sentences.append(sentence) current_length += len(sentence.split()) else: break # Restore original sentence order if summary_sentences: original_order = [(sentences.index(s), s) for s in summary_sentences] original_order.sort() summary_sentences = [s for _, s in original_order] return " ".join(summary_sentences) ##################################### # Information Extraction Functions ##################################### @st.cache_data(show_spinner=False) def extract_text_from_file(file_obj): """Extract text from uploaded document file""" filename = file_obj.name ext = os.path.splitext(filename)[1].lower() if ext == ".docx": try: document = docx.Document(file_obj) text = "\n".join(para.text for para in document.paragraphs if para.text.strip()) except Exception as e: return f"Error processing DOCX file: {e}" elif ext == ".doc": try: with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file: temp_file.write(file_obj.getvalue()) temp_path = temp_file.name text = docx2txt.process(temp_path) os.unlink(temp_path) except Exception as e: return f"Error processing DOC file: {e}" elif ext == ".txt": try: text = file_obj.getvalue().decode("utf-8") except Exception as e: return f"Error processing TXT file: {e}" else: return "Unsupported file type. Please upload a .docx, .doc, or .txt file." return text[:15000] if text else text def extract_skills(text): """Extract key skills from the resume""" skill_keywords = { "Programming": ["Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "Go", "React", "Angular", "Vue", "Node.js"], "Data Science": ["Machine Learning", "Data Analysis", "Statistics", "TensorFlow", "PyTorch", "AI", "Algorithms", "NLP", "Deep Learning"], "Database": ["SQL", "MySQL", "MongoDB", "Database", "NoSQL", "PostgreSQL", "Oracle", "Redis"], "Web Development": ["React", "Angular", "Node.js", "Frontend", "Backend", "Full-Stack", "REST API", "GraphQL"], "Software Development": ["Agile", "Scrum", "Git", "DevOps", "Docker", "System Design", "CI/CD", "Jenkins"], "Cloud": ["AWS", "Azure", "Google Cloud", "Cloud Computing", "Lambda", "S3", "EC2"], "Security": ["Cybersecurity", "Network Security", "Encryption", "Security"], "Business": ["Project Management", "Business Analysis", "Leadership", "Teamwork", "Agile", "Scrum"], "Design": ["UX/UI", "User Experience", "Design Thinking", "Adobe", "Figma"] } text_lower = text.lower() return [skill for category, skills in skill_keywords.items() for skill in skills if skill.lower() in text_lower] @lru_cache(maxsize=32) def extract_name(text_start): """Extract candidate name from the beginning of resume text""" lines = text_start.split('\n') potential_name_lines = [line.strip() for line in lines[:5] if line.strip()] if potential_name_lines: first_line = potential_name_lines[0] if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae", "profile"]): return first_line for line in potential_name_lines[:3]: if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]): return line return "Unknown (please extract from resume)" def extract_age(text): """Extract candidate age from resume text""" age_patterns = [ r'age:?\s*(\d{1,2})', r'(\d{1,2})\s*years\s*old', r'dob:.*(\d{4})', r'date of birth:.*(\d{4})' ] text_lower = text.lower() for pattern in age_patterns: matches = re.search(pattern, text_lower) if matches: # Convert birth year to age if needed if len(matches.group(1)) == 4: try: return str(2025 - int(matches.group(1))) except: pass return matches.group(1) return "Not specified" def extract_industry(text): """Extract expected job industry from resume""" industry_keywords = { "Technology": ["software", "programming", "developer", "IT", "tech", "computer", "digital"], "Finance": ["banking", "financial", "accounting", "finance", "analyst"], "Healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor", "patient"], "Education": ["teaching", "teacher", "professor", "education", "university", "school", "academic"], "Marketing": ["marketing", "advertising", "digital marketing", "social media", "brand"], "Engineering": ["engineer", "engineering", "mechanical", "civil", "electrical"], "Data Science": ["data science", "machine learning", "AI", "analytics", "big data"], "Management": ["manager", "management", "leadership", "executive", "director"], "Consulting": ["consultant", "consulting", "advisor"], "Sales": ["sales", "business development", "account manager", "client relations"] } text_lower = text.lower() industry_counts = {industry: sum(text_lower.count(keyword.lower()) for keyword in keywords) for industry, keywords in industry_keywords.items()} return max(industry_counts.items(), key=lambda x: x[1])[0] if any(industry_counts.values()) else "Not clearly specified" def extract_job_position(text): """Extract expected job position from resume""" objective_patterns = [ r'objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', r'career\s*objective:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', r'professional\s*summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', r'summary:?\s*(.*?)(?=\n\n|\n\w+:|\Z)', r'seeking\s*(?:a|an)?\s*(?:position|role|opportunity)\s*(?:as|in)?\s*(?:a|an)?\s*([^.]*)' ] text_lower = text.lower() for pattern in objective_patterns: match = re.search(pattern, text_lower, re.IGNORECASE | re.DOTALL) if match: objective_text = match.group(1).strip() job_titles = ["developer", "engineer", "analyst", "manager", "director", "specialist", "coordinator", "consultant", "designer", "architect", "administrator"] for title in job_titles: if title in objective_text: title_pattern = r'(?:a|an)?\s*(\w+\s+' + title + r'|\w+\s+\w+\s+' + title + r')' title_match = re.search(title_pattern, objective_text) if title_match: return title_match.group(1).strip().title() return title.title() if len(objective_text) > 10: words = objective_text.split() return " ".join(words[:10]).title() + "..." if len(words) > 10 else objective_text.title() job_patterns = [ r'experience:.*?(\w+\s+\w+(?:\s+\w+)?)(?=\s*at|\s*\(|\s*-|\s*,|\s*\d{4}|\n)', r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*current\s*\)', r'(\w+\s+\w+(?:\s+\w+)?)\s*\(\s*present\s*\)' ] for pattern in job_patterns: match = re.search(pattern, text_lower, re.IGNORECASE) if match: return match.group(1).strip().title() return "Not explicitly stated" ##################################### # Core Analysis Functions ##################################### def summarize_resume_text(resume_text, models): """Generate a structured summary of resume text""" start_time = time.time() # Extract critical information name = extract_name(resume_text[:500]) age = extract_age(resume_text) industry = extract_industry(resume_text) job_position = extract_job_position(resume_text) skills = extract_skills(resume_text) # Generate overall summary try: if has_pipeline and 'summarizer' in models: model_summary = models['summarizer'](resume_text[:2000], max_length=100, min_length=30, do_sample=False)[0]['summary_text'] else: model_summary = summarize_text(resume_text, models, max_length=100) except Exception as e: st.warning(f"Error in resume summarization: {e}") model_summary = "Error generating summary. Please check the original resume." # Format the structured summary formatted_summary = f"Name: {name}\n\n" formatted_summary += f"Age: {age}\n\n" formatted_summary += f"Expected Industry: {industry}\n\n" formatted_summary += f"Expected Job Position: {job_position}\n\n" formatted_summary += f"Skills: {', '.join(skills)}\n\n" formatted_summary += f"Summary: {model_summary}" return formatted_summary, time.time() - start_time def extract_job_requirements(job_description, models): """Extract key requirements from a job description""" # Combined skill list (abridged for brevity) tech_skills = [ "Python", "Java", "C++", "JavaScript", "TypeScript", "SQL", "HTML", "CSS", "React", "Angular", "Machine Learning", "Data Science", "AI", "AWS", "Azure", "Docker", "Kubernetes", "MySQL", "MongoDB", "PostgreSQL", "Project Management", "Agile", "Scrum", "Leadership", "Communication", "Problem Solving", "Git", "DevOps", "Full Stack", "Mobile Development", "Android", "iOS" ] clean_job_text = job_description.lower() # Extract job title title_patterns = [ r'^([^:.\n]+?)(position|role|job|opening|vacancy)', r'^([^:.\n]+?)\n', r'(hiring|looking for(?: a| an)?|recruiting)(?: a| an)? ([^:.\n]+?)(:-|[.:]|\n|$)' ] job_title = "Not specified" for pattern in title_patterns: title_match = re.search(pattern, clean_job_text, re.IGNORECASE) if title_match: potential_title = title_match.group(1).strip() if len(title_match.groups()) >= 1 else title_match.group(2).strip() if 3 <= len(potential_title) <= 50: job_title = potential_title.capitalize() break # Extract years of experience exp_patterns = [ r'(\d+)(?:\+)?\s*(?:years|yrs)(?:\s*of)?\s*(?:experience|exp)', r'experience\s*(?:of)?\s*(\d+)(?:\+)?\s*(?:years|yrs)' ] years_required = 0 for pattern in exp_patterns: exp_match = re.search(pattern, clean_job_text, re.IGNORECASE) if exp_match: try: years_required = int(exp_match.group(1)) break except: pass # Extract required skills required_skills = [skill for skill in tech_skills if re.search(r'\b' + re.escape(skill.lower()) + r'\b', clean_job_text)] # Fallback if no skills found if not required_skills: words = re.findall(r'\b\w{4,}\b', clean_job_text) word_counts = {} for word in words: if word not in ["with", "that", "this", "have", "from", "they", "will", "what", "your", "their", "about"]: word_counts[word] = word_counts.get(word, 0) + 1 sorted_words = sorted(word_counts.items(), key=lambda x: x[1], reverse=True) required_skills = [word.capitalize() for word, _ in sorted_words[:5]] job_summary = summarize_text(job_description, models, max_length=100) return { "title": job_title, "years_experience": years_required, "required_skills": required_skills, "summary": job_summary } def evaluate_job_fit(resume_summary, job_requirements, models): """Evaluate how well a resume matches job requirements""" start_time = time.time() # Extract information required_skills = job_requirements["required_skills"] years_required = job_requirements["years_experience"] job_title = job_requirements["title"] skills_mentioned = extract_skills(resume_summary) # Calculate match percentages matching_skills = [skill for skill in required_skills if skill in skills_mentioned] skill_match_percentage = len(matching_skills) / len(required_skills) if required_skills else 0 # Extract experience level from resume experience_pattern = r'(\d+)\+?\s*years?\s*(?:of)?\s*experience' years_experience = 0 experience_match = re.search(experience_pattern, resume_summary, re.IGNORECASE) if experience_match: try: years_experience = int(experience_match.group(1)) except: pass # Calculate match scores exp_match_ratio = min(1.0, years_experience / max(1, years_required)) if years_required > 0 else 0.5 # Job title match score title_words = [word for word in job_title.lower().split() if len(word) > 3] title_matches = sum(1 for word in title_words if word in resume_summary.lower()) title_match = title_matches / len(title_words) if title_words else 0 # Calculate individual scores skill_score = min(2, skill_match_percentage * 3) exp_score = min(2, exp_match_ratio * 2) title_score = min(2, title_match * 2) # Extract candidate info name_match = re.search(r'Name:\s*(.*?)(?=\n|\Z)', resume_summary) name = name_match.group(1).strip() if name_match else "The candidate" industry_match = re.search(r'Expected Industry:\s*(.*?)(?=\n|\Z)', resume_summary) industry = industry_match.group(1).strip() if industry_match else "unspecified industry" # Calculate final weighted score weighted_score = (skill_score * 0.5) + (exp_score * 0.3) + (title_score * 0.2) # Determine fit score if weighted_score >= 1.5: fit_score = 2 # Good fit elif weighted_score >= 0.8: fit_score = 1 # Potential fit else: fit_score = 0 # Not a fit # Generate assessment text missing_skills = [skill for skill in required_skills if skill not in skills_mentioned] if fit_score == 2: fit_assessment = f"{fit_score}: GOOD FIT - {name} demonstrates strong alignment with the {job_title} position. Their background in {industry} and professional experience appear well-suited for this role's requirements. The technical expertise matches what the position demands." elif fit_score == 1: fit_assessment = f"{fit_score}: POTENTIAL FIT - {name} shows potential for the {job_title} role with some relevant experience, though there are gaps in certain technical areas. Their {industry} background provides partial alignment with the position requirements. Additional training might be needed in {', '.join(missing_skills[:2])} if pursuing this opportunity." else: fit_assessment = f"{fit_score}: NO FIT - {name}'s current background shows limited alignment with this {job_title} position. Their experience level and technical background differ significantly from the role requirements. A position better matching their {industry} expertise might be more suitable." return fit_assessment, fit_score, time.time() - start_time def analyze_job_fit(resume_summary, job_description, models): """End-to-end job fit analysis""" start_time = time.time() job_requirements = extract_job_requirements(job_description, models) assessment, fit_score, execution_time = evaluate_job_fit(resume_summary, job_requirements, models) return assessment, fit_score, time.time() - start_time ##################################### # Main Function ##################################### def main(): """Main function for the Streamlit application""" st.title("Resume-Job Fit Analyzer") st.markdown("Upload your resume file in **.docx**, **.doc**, or **.txt** format and enter a job description to see how well you match with the job requirements.") # Load models models = load_models() # User inputs uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"]) job_description = st.text_area("Enter Job Description", height=200, placeholder="Paste the job description here...") # Process when button clicked if uploaded_file is not None and job_description and st.button("Analyze Job Fit"): progress_bar = st.progress(0) status_text = st.empty() # Step 1: Extract text status_text.text("Step 1/3: Extracting text from resume...") resume_text = extract_text_from_file(uploaded_file) progress_bar.progress(25) if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.": st.error(resume_text) else: # Step 2: Generate summary status_text.text("Step 2/3: Analyzing resume and generating summary...") summary, summarization_time = summarize_resume_text(resume_text, models) progress_bar.progress(50) # Display summary st.subheader("Your Resume Summary") st.markdown(summary) # Step 3: Generate job fit assessment status_text.text("Step 3/3: Evaluating job fit (this will take a moment)...") assessment, fit_score, assessment_time = analyze_job_fit(summary, job_description, models) progress_bar.progress(100) status_text.empty() # Display results st.subheader("Job Fit Assessment") # Display score with appropriate styling fit_labels = {0: "NOT FIT", 1: "POTENTIAL FIT", 2: "GOOD FIT"} score_colors = {0: "red", 1: "orange", 2: "green"} st.markdown(f"

{fit_labels[fit_score]}

", unsafe_allow_html=True) st.markdown(assessment) st.info(f"Analysis completed in {(summarization_time + assessment_time):.2f} seconds") # Recommendations st.subheader("Recommended Next Steps") if fit_score == 2: st.markdown(""" - Apply for this position as you appear to be a good match - Prepare for interviews by focusing on your relevant experience - Highlight your matching skills in your cover letter """) elif fit_score == 1: st.markdown(""" - Consider applying but address skill gaps in your cover letter - Emphasize transferable skills and relevant experience - Prepare to discuss how you can quickly develop missing skills """) else: st.markdown(""" - Look for positions better aligned with your current skills - If interested in this field, focus on developing the required skills - Consider similar roles with fewer experience requirements """) if __name__ == "__main__": main()