import os import tempfile import re import streamlit as st import docx import textract from sentence_transformers import SentenceTransformer, util ##################################### # Function: Extract Text from File ##################################### def extract_text_from_file(file_obj): """ Extract text from .doc and .docx files. Returns the extracted text or an error message if extraction fails. """ filename = file_obj.name ext = os.path.splitext(filename)[1].lower() text = "" if ext == ".docx": try: document = docx.Document(file_obj) text = "\n".join([para.text for para in document.paragraphs]) except Exception as e: text = f"Error processing DOCX file: {e}" elif ext == ".doc": try: # textract requires a file name; save the file temporarily. with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp: tmp.write(file_obj.read()) tmp.flush() tmp_filename = tmp.name text = textract.process(tmp_filename).decode("utf-8") except Exception as e: text = f"Error processing DOC file: {e}" finally: try: os.remove(tmp_filename) except Exception: pass else: text = "Unsupported file type." return text ##################################### # Function: Extract Basic Resume Information ##################################### def extract_basic_resume_info(text): """ Parse the extracted text to extract/summarize: - Name - Age - Job Experience (capturing the block under the "experience" section) - Skills - Education Returns a dictionary with the extracted elements. """ info = { "Name": None, "Age": None, "Job Experience": None, "Skills": None, "Education": None, } # Extract Name (e.g., "CONG, An Dong" from the first line) name_match = re.search(r"^([A-Z]+)[,\s]+([A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)", text, re.MULTILINE) if name_match: info["Name"] = f"{name_match.group(1)} {name_match.group(2)}" else: # Fallback heuristic: assume a line with two or three capitalized words might be the candidate's name. potential_names = re.findall(r"\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+){1,2}\b", text) if potential_names: info["Name"] = potential_names[0] # Extract Age (e.g., "Age: 28") age_match = re.search(r"[Aa]ge[:\-]\s*(\d{1,3})", text) if age_match: info["Age"] = age_match.group(1) # Extract Job Experience using the "experience" section. # Capture everything after the word "experience" until a new section or the end. experience_match = re.search( r"experience\s*(.*?)(?:\n\s*\n|additional information|skills|education|$)", text, re.IGNORECASE | re.DOTALL, ) if experience_match: job_experience = experience_match.group(1).strip() info["Job Experience"] = " ".join(job_experience.split()) else: # Fallback if not a labeled section. exp_match = re.search( r"(\d+)\s+(years|yrs)\s+(?:of\s+)?experience", text, re.IGNORECASE ) if exp_match: info["Job Experience"] = f"{exp_match.group(1)} {exp_match.group(2)}" # Extract Skills (e.g., "Skills: Python, Java, SQL") skills_match = re.search(r"(Skills|Technical Skills)[:\-]\s*(.+)", text, re.IGNORECASE) if skills_match: skills_str = skills_match.group(2).strip() info["Skills"] = skills_str.rstrip(".") # Extract Education (e.g., "Education: ...") edu_match = re.search( r"education\s*(.*?)(?:\n\s*\n|experience|$)", text, re.IGNORECASE | re.DOTALL ) if edu_match: education_block = edu_match.group(1).strip() info["Education"] = " ".join(education_block.split()) else: # Fallback: search for common degree identifiers. edu_match = re.search(r"(Bachelor|Master|B\.Sc|M\.Sc|Ph\.D)[^\n]+", text) if edu_match: info["Education"] = edu_match.group(0) return info ##################################### # Function: Summarize Basic Info into a Paragraph ##################################### def summarize_basic_info(info): """ Combine the extracted resume elements into a concise summary paragraph. """ parts = [] if info.get("Name"): parts.append(f"Candidate {info['Name']}") else: parts.append("The candidate") if info.get("Age"): parts.append(f"aged {info['Age']}") if info.get("Job Experience"): parts.append(f"with job experience: {info['Job Experience']}") if info.get("Skills"): parts.append(f"skilled in {info['Skills']}") if info.get("Education"): parts.append(f"and educated in {info['Education']}") summary_paragraph = ", ".join(parts) + "." return summary_paragraph ##################################### # Function: Compare Candidate Summary to Company Prompt ##################################### def compute_suitability(candidate_summary, company_prompt, model): """ Compute the cosine similarity between candidate summary and company prompt embeddings. Returns a score in the range [0, 1]. """ candidate_embed = model.encode(candidate_summary, convert_to_tensor=True) company_embed = model.encode(company_prompt, convert_to_tensor=True) cosine_sim = util.cos_sim(candidate_embed, company_embed) score = float(cosine_sim.item()) return score ##################################### # Main Resume Processing Logic ##################################### def process_resume(file_obj): resume_text = extract_text_from_file(file_obj) basic_info = extract_basic_resume_info(resume_text) summary_paragraph = summarize_basic_info(basic_info) return summary_paragraph ##################################### # Load the Sentence-BERT Model ##################################### @st.cache_resource(show_spinner=False) def load_model(): return SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") model = load_model() ##################################### # Streamlit Interface ##################################### st.title("Resume Analyzer and Company Suitability Checker") st.markdown( """ Upload your resume file in **.doc** or **.docx** format. The app extracts key details such as name, age, job experience, skills, and education, and summarizes them into a single paragraph. Then, it compares the candidate summary with a company profile (using a pre-defined prompt for Google LLC) to produce a suitability score. """ ) # File uploader for resume uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"]) # Button to process the resume and store the summary in session state. if st.button("Process Resume"): if uploaded_file is None: st.error("Please upload a resume file first.") else: with st.spinner("Processing resume..."): candidate_summary = process_resume(uploaded_file) st.session_state["candidate_summary"] = candidate_summary st.subheader("Candidate Summary") st.markdown(candidate_summary) # Pre-define the company prompt for Google LLC. default_company_prompt = ( "Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, " "artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong " "problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming " "languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. " "Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture " "of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology." ) # Company prompt text area. company_prompt = st.text_area( "Enter company details:", value=default_company_prompt, height=150, ) # Button to compute the suitability score. if st.button("Compute Suitability Score"): if "candidate_summary" not in st.session_state: st.error("Please process the resume first!") else: candidate_summary = st.session_state["candidate_summary"] if candidate_summary.strip() == "": st.error("Candidate summary is empty; please check your resume file.") elif company_prompt.strip() == "": st.error("Please enter the company information.") else: with st.spinner("Computing suitability score..."): score = compute_suitability(candidate_summary, company_prompt, model) st.success(f"Suitability Score: {score:.2f} (range 0 to 1)")