Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
|
| 6 |
+
# Load the pre-trained model
|
| 7 |
+
age_classifier = pipeline("image-classification", model="nateraw/vit-age-classifier")
|
| 8 |
+
|
| 9 |
+
# Function to classify age from an image
|
| 10 |
+
def classify_age(image):
|
| 11 |
+
result = age_classifier(image)
|
| 12 |
+
predicted_age = result[0]['label']
|
| 13 |
+
confidence = result[0]['score']
|
| 14 |
+
return predicted_age, confidence
|
| 15 |
+
|
| 16 |
+
# Streamlit UI
|
| 17 |
+
st.title("Age Classification App")
|
| 18 |
+
st.write("Upload an image to classify the person's age.")
|
| 19 |
+
|
| 20 |
+
# File uploader
|
| 21 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 22 |
+
|
| 23 |
+
# Process the uploaded image
|
| 24 |
+
if uploaded_file is not None:
|
| 25 |
+
image = Image.open(uploaded_file).convert("RGB")
|
| 26 |
+
|
| 27 |
+
# Display uploaded image
|
| 28 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 29 |
+
|
| 30 |
+
# Get prediction
|
| 31 |
+
predicted_age, confidence = classify_age(image)
|
| 32 |
+
|
| 33 |
+
# Show results
|
| 34 |
+
st.write(f"### Predicted Age: {predicted_age}")
|
| 35 |
+
st.write(f"**Confidence:** {confidence:.2f}")
|