File size: 11,571 Bytes
d2902aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import yaml
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F

from src.lm import RNNLM
from src.ctc import CTCPrefixScore, LOG_ZERO

CTC_BEAM_RATIO = 1.5   # DO NOT CHANGE THIS, MAY CAUSE OOM


class BeamDecoder(nn.Module):
    ''' Beam decoder for ASR '''

    def __init__(self, asr, emb_decoder, beam_size, min_len_ratio, max_len_ratio,
                 lm_path='', lm_config='', lm_weight=0.0, ctc_weight=0.0):
        super().__init__()
        # Setup
        self.beam_size = beam_size
        self.min_len_ratio = min_len_ratio
        self.max_len_ratio = max_len_ratio
        self.asr = asr

        # ToDo : implement pure ctc decode
        assert self.asr.enable_att

        # Additional decoding modules
        self.apply_ctc = ctc_weight > 0
        if self.apply_ctc:
            assert self.asr.ctc_weight > 0, 'ASR was not trained with CTC decoder'
            self.ctc_w = ctc_weight
            self.ctc_beam_size = int(CTC_BEAM_RATIO * self.beam_size)

        self.apply_lm = lm_weight > 0
        if self.apply_lm:
            self.lm_w = lm_weight
            self.lm_path = lm_path
            lm_config = yaml.load(open(lm_config, 'r'), Loader=yaml.FullLoader)
            self.lm = RNNLM(self.asr.vocab_size, **lm_config['model'])
            self.lm.load_state_dict(torch.load(
                self.lm_path, map_location='cpu')['model'])
            self.lm.eval()

        self.apply_emb = emb_decoder is not None
        if self.apply_emb:
            self.emb_decoder = emb_decoder

    def create_msg(self):
        msg = ['Decode spec| Beam size = {}\t| Min/Max len ratio = {}/{}'.format(
            self.beam_size, self.min_len_ratio, self.max_len_ratio)]
        if self.apply_ctc:
            msg.append(
                '           |Joint CTC decoding enabled \t| weight = {:.2f}\t'.format(self.ctc_w))
        if self.apply_lm:
            msg.append('           |Joint LM decoding enabled \t| weight = {:.2f}\t| src = {}'.format(
                self.lm_w, self.lm_path))
        if self.apply_emb:
            msg.append('           |Joint Emb. decoding enabled \t| weight = {:.2f}'.format(
                self.lm_w, self.emb_decoder.fuse_lambda.mean().cpu().item()))

        return msg

    def forward(self, audio_feature, feature_len):
        # Init.
        assert audio_feature.shape[0] == 1, "Batchsize == 1 is required for beam search"
        batch_size = audio_feature.shape[0]
        device = audio_feature.device
        dec_state = self.asr.decoder.init_state(
            batch_size)                           # Init zero states
        self.asr.attention.reset_mem()            # Flush attention mem
        # Max output len set w/ hyper param.
        max_output_len = int(
            np.ceil(feature_len.cpu().item()*self.max_len_ratio))
        # Min output len set w/ hyper param.
        min_output_len = int(
            np.ceil(feature_len.cpu().item()*self.min_len_ratio))
        # Store attention map if location-aware
        store_att = self.asr.attention.mode == 'loc'
        prev_token = torch.zeros(
            (batch_size, 1), dtype=torch.long, device=device)     # Start w/ <sos>
        # Cache of beam search
        final_hypothesis, next_top_hypothesis = [], []
        # Incase ctc is disabled
        ctc_state, ctc_prob, candidates, lm_state = None, None, None, None

        # Encode
        encode_feature, encode_len = self.asr.encoder(
            audio_feature, feature_len)

        # CTC decoding
        if self.apply_ctc:
            ctc_output = F.log_softmax(
                self.asr.ctc_layer(encode_feature), dim=-1)
            ctc_prefix = CTCPrefixScore(ctc_output)
            ctc_state = ctc_prefix.init_state()

        # Start w/ empty hypothesis
        prev_top_hypothesis = [Hypothesis(decoder_state=dec_state, output_seq=[],
                                          output_scores=[], lm_state=None, ctc_prob=0,
                                          ctc_state=ctc_state, att_map=None)]
        # Attention decoding
        for t in range(max_output_len):
            for hypothesis in prev_top_hypothesis:
                # Resume previous step
                prev_token, prev_dec_state, prev_attn, prev_lm_state, prev_ctc_state = hypothesis.get_state(
                    device)
                self.asr.set_state(prev_dec_state, prev_attn)

                # Normal asr forward
                attn, context = self.asr.attention(
                    self.asr.decoder.get_query(), encode_feature, encode_len)
                asr_prev_token = self.asr.pre_embed(prev_token)
                decoder_input = torch.cat([asr_prev_token, context], dim=-1)
                cur_prob, d_state = self.asr.decoder(decoder_input)

                # Embedding fusion (output shape 1xV)
                if self.apply_emb:
                    _, cur_prob = self.emb_decoder( d_state, cur_prob, return_loss=False)
                else:
                    cur_prob = F.log_softmax(cur_prob, dim=-1)

                # Perform CTC prefix scoring on limited candidates (else OOM easily)
                if self.apply_ctc:
                    # TODO : Check the performance drop for computing part of candidates only
                    _, ctc_candidates = cur_prob.squeeze(0).topk(self.ctc_beam_size, dim=-1)
                    candidates = ctc_candidates.cpu().tolist()
                    ctc_prob, ctc_state = ctc_prefix.cheap_compute(
                        hypothesis.outIndex, prev_ctc_state, candidates)
                    # TODO : study why ctc_char (slightly) > 0 sometimes
                    ctc_char = torch.FloatTensor(ctc_prob - hypothesis.ctc_prob).to(device)

                    # Combine CTC score and Attention score (HACK: focus on candidates, block others)
                    hack_ctc_char = torch.zeros_like(cur_prob).data.fill_(LOG_ZERO)
                    for idx, char in enumerate(candidates):
                        hack_ctc_char[0, char] = ctc_char[idx]
                    cur_prob = (1-self.ctc_w)*cur_prob + self.ctc_w*hack_ctc_char  # ctc_char
                    cur_prob[0, 0] = LOG_ZERO  # Hack to ignore <sos>

                # Joint RNN-LM decoding
                if self.apply_lm:
                    # assuming batch size always 1, resulting 1x1
                    lm_input = prev_token.unsqueeze(1)
                    lm_output, lm_state = self.lm(
                        lm_input, torch.ones([batch_size]), hidden=prev_lm_state)
                    # assuming batch size always 1,  resulting 1xV
                    lm_output = lm_output.squeeze(0)
                    cur_prob += self.lm_w*lm_output.log_softmax(dim=-1)

                # Beam search
                # Note: Ignored batch dim.
                topv, topi = cur_prob.squeeze(0).topk(self.beam_size)
                prev_attn = self.asr.attention.att_layer.prev_att.cpu() if store_att else None
                final, top = hypothesis.addTopk(topi, topv, self.asr.decoder.get_state(), att_map=prev_attn,
                                                lm_state=lm_state, ctc_state=ctc_state, ctc_prob=ctc_prob,
                                                ctc_candidates=candidates)
                # Move complete hyps. out
                if final is not None and (t >= min_output_len):
                    final_hypothesis.append(final)
                    if self.beam_size == 1:
                        return final_hypothesis
                next_top_hypothesis.extend(top)

            # Sort for top N beams
            next_top_hypothesis.sort(key=lambda o: o.avgScore(), reverse=True)
            prev_top_hypothesis = next_top_hypothesis[:self.beam_size]
            next_top_hypothesis = []

        # Rescore all hyp (finished/unfinished)
        final_hypothesis += prev_top_hypothesis
        final_hypothesis.sort(key=lambda o: o.avgScore(), reverse=True)

        return final_hypothesis[:self.beam_size]


class Hypothesis:
    '''Hypothesis for beam search decoding.
       Stores the history of label sequence & score 
       Stores the previous decoder state, ctc state, ctc score, lm state and attention map (if necessary)'''

    def __init__(self, decoder_state, output_seq, output_scores, lm_state, ctc_state, ctc_prob, att_map):
        assert len(output_seq) == len(output_scores)
        # attention decoder
        self.decoder_state = decoder_state
        self.att_map = att_map

        # RNN language model
        if type(lm_state) is tuple:
            self.lm_state = (lm_state[0].cpu(),
                             lm_state[1].cpu())  # LSTM state
        elif lm_state is None:
            self.lm_state = None                                  # Init state
        else:
            self.lm_state = lm_state.cpu()                        # GRU state

        # Previous outputs
        self.output_seq = output_seq        # Prefix, List of list
        self.output_scores = output_scores  # Prefix score, list of float

        # CTC decoding
        self.ctc_state = ctc_state          # List of np
        self.ctc_prob = ctc_prob            # List of float

    def avgScore(self):
        '''Return the averaged log probability of hypothesis'''
        assert len(self.output_scores) != 0
        return sum(self.output_scores) / len(self.output_scores)

    def addTopk(self, topi, topv, decoder_state, att_map=None,
                lm_state=None, ctc_state=None, ctc_prob=0.0, ctc_candidates=[]):
        '''Expand current hypothesis with a given beam size'''
        new_hypothesis = []
        term_score = None
        ctc_s, ctc_p = None, None
        beam_size = topi.shape[-1]

        for i in range(beam_size):
            # Detect <eos>
            if topi[i].item() == 1:
                term_score = topv[i].cpu()
                continue

            idxes = self.output_seq[:]     # pass by value
            scores = self.output_scores[:]  # pass by value
            idxes.append(topi[i].cpu())
            scores.append(topv[i].cpu())
            if ctc_state is not None:
                # ToDo: Handle out-of-candidate case.
                idx = ctc_candidates.index(topi[i].item())
                ctc_s = ctc_state[idx, :, :]
                ctc_p = ctc_prob[idx]
            new_hypothesis.append(Hypothesis(decoder_state,
                                             output_seq=idxes, output_scores=scores, lm_state=lm_state,
                                             ctc_state=ctc_s, ctc_prob=ctc_p, att_map=att_map))
        if term_score is not None:
            self.output_seq.append(torch.tensor(1))
            self.output_scores.append(term_score)
            return self, new_hypothesis
        return None, new_hypothesis

    def get_state(self, device):
        prev_token = self.output_seq[-1] if len(self.output_seq) != 0 else 0
        prev_token = torch.LongTensor([prev_token]).to(device)
        att_map = self.att_map.to(device) if self.att_map is not None else None
        if type(self.lm_state) is tuple:
            lm_state = (self.lm_state[0].to(device),
                        self.lm_state[1].to(device))  # LSTM state
        elif self.lm_state is None:
            lm_state = None                                  # Init state
        else:
            lm_state = self.lm_state.to(
                device)                        # GRU state
        return prev_token, self.decoder_state, att_map, lm_state, self.ctc_state

    @property
    def outIndex(self):
        return [i.item() for i in self.output_seq]