File size: 9,637 Bytes
2be48c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e96d01f
2be48c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e96d01f
2be48c4
 
 
 
 
 
 
e96d01f
2be48c4
 
 
d19a832
2be48c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e96d01f
2be48c4
 
 
 
 
 
 
 
 
 
e96d01f
2be48c4
 
 
 
 
 
 
 
e96d01f
2be48c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e96d01f
2be48c4
e96d01f
2be48c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e96d01f
2be48c4
 
 
 
 
 
 
 
 
 
 
 
 
e96d01f
2be48c4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import math
import json
import torch
import librosa
import torchaudio
import os
import numpy as np
import pandas as pd
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
import time


def move_data_to_device(data, device):
    ret = []
    for i in data:
        if isinstance(i, torch.Tensor):
            ret.append(i.to(device))
    return ret

def read_content(filepath):
    '''
    Read the content file for characters, pinyin and tones.

    return:
    dict: {index: [characters, pinyin, tones]}
    exp. {'SS00050001': ['你 好 ', 'ni3 hao3 ', '3 3 ']}
    '''
    res = {}
    with open(filepath, 'r') as f:
        lines = f.readlines()
        for l in lines:
            l = l.replace('\n', ' ').replace('\t', ' ')
            tmp = l.split(' ')
            if len(tmp) == 0:
                break
            number = tmp[0][0:len(tmp[0])-4]
            s = ''
            pinyin = ''
            tones = ''
            for i in range(1, len(tmp)):
                if len(tmp[i]) == 0:
                    continue
                if i % 2 == 0:
                    pinyin += tmp[i] + ' '
                    tones += tmp[i][-1] + ' '
                else:
                    s += tmp[i] + ' '
            res[number] = [s, pinyin, tones]
    return res

def read_dataset_index(filepath='/kaggle/input/paddle-speech/AISHELL-3/train'):
    '''
    get all audio files' index and file paths
    read content.txt to get corresponding words, pinyin, tones, duration

    return dataframe:
    ['index', 'filepath', 'word', 'pinyin', 'tone', 'duration']

    5 tones in total, 5 represents neutral tone
    '''
    features = read_content(os.path.join(filepath, 'content.txt'))

    start_time = time.time()
    count = 0

    durations = {}
    with open('/kaggle/input/durations/durations.txt', 'r') as f:
        lines = f.readlines()
        for l in lines:
            tmp = (l.replace('\n', '')).split(' ')
            if len(tmp) != 0:
                durations[tmp[0]] = float(tmp[1])

    audio_path = os.path.join(filepath, 'wav')
    indexes = []
    for root, dirs, files in os.walk(audio_path):
        for f in files:
            if f.endswith('.wav'):
                count += 1
                index = f[0:len(f)-4]
                filepath = os.path.join(audio_path, index[0:len(index)-4], f)
                word, py, tone = features[index]
                du = durations[index]
                indexes.append((index, filepath, word, py, tone, du))
    
    end_time = time.time()
    print('#wav file read:', count)
    print('read dataset index time: ', end_time - start_time)

    return pd.DataFrame.from_records(indexes, columns=['index', 'filepath', 'word', 'pinyin', 'tone', 'duration'])

def collate_fn(batch):
    inp = []
    f0 = []
    word = []
    tone = []
    max_frame_num = 1600
    for sample in batch:
        max_frame_num = max(max_frame_num, sample[0].shape[0], sample[1].shape[0], sample[2].shape[0], sample[3].shape[0])
    for sample in batch:
        inp.append(
            torch.nn.functional.pad(sample[0], (0, 0, 0, max_frame_num - sample[0].shape[0]), mode='constant', value=0))
        f0.append(
            torch.nn.functional.pad(sample[1], (0, max_frame_num - sample[1].shape[0]), mode='constant', value=0))
        word.append(
            torch.nn.functional.pad(sample[2], (0, 50 - sample[2].shape[0]), mode='constant', value=0))
        tone.append(
            torch.nn.functional.pad(sample[3], (0, 50 - sample[3].shape[0]), mode='constant', value=0))
    inp = torch.stack(inp)
    f0 = torch.stack(f0)
    word = torch.stack(word)
    tone = torch.stack(tone)

    return inp, f0, word, tone


def get_data_loader(split, args):
    Dataset = MyDataset(
        dataset_root=args['dataset_root'],
        split=split,
        sampling_rate=args['sampling_rate'],
        sample_length=args['sample_length'],
        frame_size=args['frame_size'],
    )
    Dataset.dataset_index=Dataset.dataset_index[:32]
    Dataset.index=Dataset.index[:32]
    data_loader = DataLoader(
        Dataset,
        batch_size=args['batch_size'],
        num_workers=args['num_workers'],
        pin_memory=True,
        shuffle=True, # changed into True cuz audio files recorded by same speaker are stored in the same folder
        collate_fn=collate_fn,
    )
    return data_loader

class MyDataset(Dataset):
    def __init__(self, dataset_root, split, sampling_rate, sample_length, frame_size):
        self.dataset_root = dataset_root
        self.split = split
        self.sampling_rate = sampling_rate
        self.sample_length = sample_length
        self.frame_size = frame_size
        self.frame_per_sec = int(1 / self.frame_size)

        # self.annotations = get_annotations(get_all_file_names(os.path.join(self.dataset_root, 'AISHELL-3', split)), level='word')

        self.dataset_index = read_dataset_index(os.path.join(self.dataset_root, 'AISHELL-3', split))

        self.duration = {}
        self.index = self.index_data()

        
        self.pinyin = {} # read encoded pinyin
        with open('/kaggle/input/pinyin-encode/pinyin.txt', 'r') as f:
            lines = f.readlines()
            i = 0
            for l in lines:
                self.pinyin[l.replace('\n', '')] = i
                i += 1

    
    def index_data(self):
        '''
        Prepare the index for the dataset, i.e., the audio file name and starting time of each sample

        go through self.dataset_index to get duration and then calculate
        '''
        index = []
        for indexs, row in self.dataset_index.iterrows():
            duration = row['duration']
            num_seg = math.ceil(duration / self.sample_length)
            for i in range(num_seg):
                index.append([indexs, i * self.sample_length])
            self.duration[row['index']] = row['duration']

        return index

    
    def __len__(self):
        return len(self.index)
    
    def __getitem__(self, idx):
        '''
        int idx: index of the audio file (not exp.SSB00050001)

        return mel spectrogram, FUNDAMENTAL FREQUENCY(crepe/pyin), words, tones
        '''
        audio_fn, start_sec = self.index[idx]
        end_sec = start_sec + self.sample_length
        
        audio_fp = self.dataset_index.loc[audio_fn,'filepath']

        mel = None
        #load data from file
        waveform, sample_rate = torchaudio.load(audio_fp)
        waveform = torchaudio.transforms.Resample(sample_rate, self.sampling_rate)(waveform)
        mel_spec = torchaudio.transforms.MelSpectrogram(sample_rate=self.sampling_rate, n_fft=2048, hop_length=100, n_mels=256)(waveform)
        mel_spec = torch.mean(mel_spec,0)
        # print(mel_spec.shape)    

        # calculate fundamental frequency
        f0 = None
        waveform, sr = librosa.load(audio_fp, sr=self.sampling_rate)
        f0 = torch.from_numpy(librosa.yin(waveform, fmin=50, fmax=550, hop_length=100))

        # word_roll, tone_roll = self.get_labels(self.annotations[self.dataset_index.loc[audio_fn, 'index']], self.dataset_index.loc[audio_fn,'duration'])
        words = self.dataset_index.loc[audio_fn, 'pinyin']
        w = words.split(' ')
        word_roll = []
        for i in range(0, len(w)):           
            if len(w[i]) != 0:
                if self.pinyin.get(w[i][0:-1]) == None:
                    self.pinyin[w[i][0:-1]] = len(self.pinyin)
                word_roll.append(self.pinyin[w[i][0:-1]])
        tones = self.dataset_index.loc[audio_fn, 'tone']
        t = tones.split(' ')
        tone_roll = []
        for tone in t:
            if len(tone) != 0:
                tone_roll.append(int(tone))
        
        spectrogram_clip = None
        f0_clip = None
        word_clip = None
        tone_clip = None

        # create clips
        start_frame = int(start_sec * self.frame_per_sec)
        end_frame = start_frame + 1600 
        # print(start_frame, end_frame)
        spectrogram_clip = mel_spec[:, start_frame:end_frame].T
        f0_clip = f0[start_sec:end_sec]
        #word_clip = word_roll[start_frame:end_frame]
        #tone_clip = tone_roll[start_frame:end_frame]

        # print(tone_roll)
        return spectrogram_clip, f0_clip, torch.Tensor(word_roll), torch.Tensor(tone_roll) #word_clip, tone_clip
    
    def get_labels(self, annotation_data, duration):
        '''
        This function read annotation from file, and then convert annotation from note-level to frame-level
        Because we will be using frame-level labels in training.
        '''
        frame_num = math.ceil(duration * self.frame_per_sec)

        word_roll = torch.zeros(size=(frame_num + 1,), dtype=torch.long)
        tone_roll = torch.zeros(size=(frame_num + 1,), dtype=torch.long)
        
        for note in annotation_data:
            start_time, end_time, mark = note  # Assuming annotation format: (start_time, end_time, pitch)

            # Convert note start and end times to frame indices
            start_frame = int(start_time * self.frame_per_sec)
            end_frame = int(end_time * self.frame_per_sec)

            # Clip frame indices to be within the valid range, no need in this task
            start_frame = max(0, min(frame_num, start_frame))
            end_frame = max(0, min(frame_num, end_frame))
            #print(start_frame, end_frame)

            # WORD LEVEL Mark the frames corresponding to the note
            word_roll[start_frame:end_frame+1] = self.pinyin[mark[:-1]]
            tone_roll[start_frame:end_frame+1] = int(mark[-1])
        # print(tone_roll)
        return word_roll, tone_roll