File size: 9,637 Bytes
2be48c4 e96d01f 2be48c4 e96d01f 2be48c4 e96d01f 2be48c4 d19a832 2be48c4 e96d01f 2be48c4 e96d01f 2be48c4 e96d01f 2be48c4 e96d01f 2be48c4 e96d01f 2be48c4 e96d01f 2be48c4 e96d01f 2be48c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import math
import json
import torch
import librosa
import torchaudio
import os
import numpy as np
import pandas as pd
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
import time
def move_data_to_device(data, device):
ret = []
for i in data:
if isinstance(i, torch.Tensor):
ret.append(i.to(device))
return ret
def read_content(filepath):
'''
Read the content file for characters, pinyin and tones.
return:
dict: {index: [characters, pinyin, tones]}
exp. {'SS00050001': ['你 好 ', 'ni3 hao3 ', '3 3 ']}
'''
res = {}
with open(filepath, 'r') as f:
lines = f.readlines()
for l in lines:
l = l.replace('\n', ' ').replace('\t', ' ')
tmp = l.split(' ')
if len(tmp) == 0:
break
number = tmp[0][0:len(tmp[0])-4]
s = ''
pinyin = ''
tones = ''
for i in range(1, len(tmp)):
if len(tmp[i]) == 0:
continue
if i % 2 == 0:
pinyin += tmp[i] + ' '
tones += tmp[i][-1] + ' '
else:
s += tmp[i] + ' '
res[number] = [s, pinyin, tones]
return res
def read_dataset_index(filepath='/kaggle/input/paddle-speech/AISHELL-3/train'):
'''
get all audio files' index and file paths
read content.txt to get corresponding words, pinyin, tones, duration
return dataframe:
['index', 'filepath', 'word', 'pinyin', 'tone', 'duration']
5 tones in total, 5 represents neutral tone
'''
features = read_content(os.path.join(filepath, 'content.txt'))
start_time = time.time()
count = 0
durations = {}
with open('/kaggle/input/durations/durations.txt', 'r') as f:
lines = f.readlines()
for l in lines:
tmp = (l.replace('\n', '')).split(' ')
if len(tmp) != 0:
durations[tmp[0]] = float(tmp[1])
audio_path = os.path.join(filepath, 'wav')
indexes = []
for root, dirs, files in os.walk(audio_path):
for f in files:
if f.endswith('.wav'):
count += 1
index = f[0:len(f)-4]
filepath = os.path.join(audio_path, index[0:len(index)-4], f)
word, py, tone = features[index]
du = durations[index]
indexes.append((index, filepath, word, py, tone, du))
end_time = time.time()
print('#wav file read:', count)
print('read dataset index time: ', end_time - start_time)
return pd.DataFrame.from_records(indexes, columns=['index', 'filepath', 'word', 'pinyin', 'tone', 'duration'])
def collate_fn(batch):
inp = []
f0 = []
word = []
tone = []
max_frame_num = 1600
for sample in batch:
max_frame_num = max(max_frame_num, sample[0].shape[0], sample[1].shape[0], sample[2].shape[0], sample[3].shape[0])
for sample in batch:
inp.append(
torch.nn.functional.pad(sample[0], (0, 0, 0, max_frame_num - sample[0].shape[0]), mode='constant', value=0))
f0.append(
torch.nn.functional.pad(sample[1], (0, max_frame_num - sample[1].shape[0]), mode='constant', value=0))
word.append(
torch.nn.functional.pad(sample[2], (0, 50 - sample[2].shape[0]), mode='constant', value=0))
tone.append(
torch.nn.functional.pad(sample[3], (0, 50 - sample[3].shape[0]), mode='constant', value=0))
inp = torch.stack(inp)
f0 = torch.stack(f0)
word = torch.stack(word)
tone = torch.stack(tone)
return inp, f0, word, tone
def get_data_loader(split, args):
Dataset = MyDataset(
dataset_root=args['dataset_root'],
split=split,
sampling_rate=args['sampling_rate'],
sample_length=args['sample_length'],
frame_size=args['frame_size'],
)
Dataset.dataset_index=Dataset.dataset_index[:32]
Dataset.index=Dataset.index[:32]
data_loader = DataLoader(
Dataset,
batch_size=args['batch_size'],
num_workers=args['num_workers'],
pin_memory=True,
shuffle=True, # changed into True cuz audio files recorded by same speaker are stored in the same folder
collate_fn=collate_fn,
)
return data_loader
class MyDataset(Dataset):
def __init__(self, dataset_root, split, sampling_rate, sample_length, frame_size):
self.dataset_root = dataset_root
self.split = split
self.sampling_rate = sampling_rate
self.sample_length = sample_length
self.frame_size = frame_size
self.frame_per_sec = int(1 / self.frame_size)
# self.annotations = get_annotations(get_all_file_names(os.path.join(self.dataset_root, 'AISHELL-3', split)), level='word')
self.dataset_index = read_dataset_index(os.path.join(self.dataset_root, 'AISHELL-3', split))
self.duration = {}
self.index = self.index_data()
self.pinyin = {} # read encoded pinyin
with open('/kaggle/input/pinyin-encode/pinyin.txt', 'r') as f:
lines = f.readlines()
i = 0
for l in lines:
self.pinyin[l.replace('\n', '')] = i
i += 1
def index_data(self):
'''
Prepare the index for the dataset, i.e., the audio file name and starting time of each sample
go through self.dataset_index to get duration and then calculate
'''
index = []
for indexs, row in self.dataset_index.iterrows():
duration = row['duration']
num_seg = math.ceil(duration / self.sample_length)
for i in range(num_seg):
index.append([indexs, i * self.sample_length])
self.duration[row['index']] = row['duration']
return index
def __len__(self):
return len(self.index)
def __getitem__(self, idx):
'''
int idx: index of the audio file (not exp.SSB00050001)
return mel spectrogram, FUNDAMENTAL FREQUENCY(crepe/pyin), words, tones
'''
audio_fn, start_sec = self.index[idx]
end_sec = start_sec + self.sample_length
audio_fp = self.dataset_index.loc[audio_fn,'filepath']
mel = None
#load data from file
waveform, sample_rate = torchaudio.load(audio_fp)
waveform = torchaudio.transforms.Resample(sample_rate, self.sampling_rate)(waveform)
mel_spec = torchaudio.transforms.MelSpectrogram(sample_rate=self.sampling_rate, n_fft=2048, hop_length=100, n_mels=256)(waveform)
mel_spec = torch.mean(mel_spec,0)
# print(mel_spec.shape)
# calculate fundamental frequency
f0 = None
waveform, sr = librosa.load(audio_fp, sr=self.sampling_rate)
f0 = torch.from_numpy(librosa.yin(waveform, fmin=50, fmax=550, hop_length=100))
# word_roll, tone_roll = self.get_labels(self.annotations[self.dataset_index.loc[audio_fn, 'index']], self.dataset_index.loc[audio_fn,'duration'])
words = self.dataset_index.loc[audio_fn, 'pinyin']
w = words.split(' ')
word_roll = []
for i in range(0, len(w)):
if len(w[i]) != 0:
if self.pinyin.get(w[i][0:-1]) == None:
self.pinyin[w[i][0:-1]] = len(self.pinyin)
word_roll.append(self.pinyin[w[i][0:-1]])
tones = self.dataset_index.loc[audio_fn, 'tone']
t = tones.split(' ')
tone_roll = []
for tone in t:
if len(tone) != 0:
tone_roll.append(int(tone))
spectrogram_clip = None
f0_clip = None
word_clip = None
tone_clip = None
# create clips
start_frame = int(start_sec * self.frame_per_sec)
end_frame = start_frame + 1600
# print(start_frame, end_frame)
spectrogram_clip = mel_spec[:, start_frame:end_frame].T
f0_clip = f0[start_sec:end_sec]
#word_clip = word_roll[start_frame:end_frame]
#tone_clip = tone_roll[start_frame:end_frame]
# print(tone_roll)
return spectrogram_clip, f0_clip, torch.Tensor(word_roll), torch.Tensor(tone_roll) #word_clip, tone_clip
def get_labels(self, annotation_data, duration):
'''
This function read annotation from file, and then convert annotation from note-level to frame-level
Because we will be using frame-level labels in training.
'''
frame_num = math.ceil(duration * self.frame_per_sec)
word_roll = torch.zeros(size=(frame_num + 1,), dtype=torch.long)
tone_roll = torch.zeros(size=(frame_num + 1,), dtype=torch.long)
for note in annotation_data:
start_time, end_time, mark = note # Assuming annotation format: (start_time, end_time, pitch)
# Convert note start and end times to frame indices
start_frame = int(start_time * self.frame_per_sec)
end_frame = int(end_time * self.frame_per_sec)
# Clip frame indices to be within the valid range, no need in this task
start_frame = max(0, min(frame_num, start_frame))
end_frame = max(0, min(frame_num, end_frame))
#print(start_frame, end_frame)
# WORD LEVEL Mark the frames corresponding to the note
word_roll[start_frame:end_frame+1] = self.pinyin[mark[:-1]]
tone_roll[start_frame:end_frame+1] = int(mark[-1])
# print(tone_roll)
return word_roll, tone_roll
|