File size: 11,571 Bytes
d2902aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import yaml
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from src.lm import RNNLM
from src.ctc import CTCPrefixScore, LOG_ZERO
CTC_BEAM_RATIO = 1.5 # DO NOT CHANGE THIS, MAY CAUSE OOM
class BeamDecoder(nn.Module):
''' Beam decoder for ASR '''
def __init__(self, asr, emb_decoder, beam_size, min_len_ratio, max_len_ratio,
lm_path='', lm_config='', lm_weight=0.0, ctc_weight=0.0):
super().__init__()
# Setup
self.beam_size = beam_size
self.min_len_ratio = min_len_ratio
self.max_len_ratio = max_len_ratio
self.asr = asr
# ToDo : implement pure ctc decode
assert self.asr.enable_att
# Additional decoding modules
self.apply_ctc = ctc_weight > 0
if self.apply_ctc:
assert self.asr.ctc_weight > 0, 'ASR was not trained with CTC decoder'
self.ctc_w = ctc_weight
self.ctc_beam_size = int(CTC_BEAM_RATIO * self.beam_size)
self.apply_lm = lm_weight > 0
if self.apply_lm:
self.lm_w = lm_weight
self.lm_path = lm_path
lm_config = yaml.load(open(lm_config, 'r'), Loader=yaml.FullLoader)
self.lm = RNNLM(self.asr.vocab_size, **lm_config['model'])
self.lm.load_state_dict(torch.load(
self.lm_path, map_location='cpu')['model'])
self.lm.eval()
self.apply_emb = emb_decoder is not None
if self.apply_emb:
self.emb_decoder = emb_decoder
def create_msg(self):
msg = ['Decode spec| Beam size = {}\t| Min/Max len ratio = {}/{}'.format(
self.beam_size, self.min_len_ratio, self.max_len_ratio)]
if self.apply_ctc:
msg.append(
' |Joint CTC decoding enabled \t| weight = {:.2f}\t'.format(self.ctc_w))
if self.apply_lm:
msg.append(' |Joint LM decoding enabled \t| weight = {:.2f}\t| src = {}'.format(
self.lm_w, self.lm_path))
if self.apply_emb:
msg.append(' |Joint Emb. decoding enabled \t| weight = {:.2f}'.format(
self.lm_w, self.emb_decoder.fuse_lambda.mean().cpu().item()))
return msg
def forward(self, audio_feature, feature_len):
# Init.
assert audio_feature.shape[0] == 1, "Batchsize == 1 is required for beam search"
batch_size = audio_feature.shape[0]
device = audio_feature.device
dec_state = self.asr.decoder.init_state(
batch_size) # Init zero states
self.asr.attention.reset_mem() # Flush attention mem
# Max output len set w/ hyper param.
max_output_len = int(
np.ceil(feature_len.cpu().item()*self.max_len_ratio))
# Min output len set w/ hyper param.
min_output_len = int(
np.ceil(feature_len.cpu().item()*self.min_len_ratio))
# Store attention map if location-aware
store_att = self.asr.attention.mode == 'loc'
prev_token = torch.zeros(
(batch_size, 1), dtype=torch.long, device=device) # Start w/ <sos>
# Cache of beam search
final_hypothesis, next_top_hypothesis = [], []
# Incase ctc is disabled
ctc_state, ctc_prob, candidates, lm_state = None, None, None, None
# Encode
encode_feature, encode_len = self.asr.encoder(
audio_feature, feature_len)
# CTC decoding
if self.apply_ctc:
ctc_output = F.log_softmax(
self.asr.ctc_layer(encode_feature), dim=-1)
ctc_prefix = CTCPrefixScore(ctc_output)
ctc_state = ctc_prefix.init_state()
# Start w/ empty hypothesis
prev_top_hypothesis = [Hypothesis(decoder_state=dec_state, output_seq=[],
output_scores=[], lm_state=None, ctc_prob=0,
ctc_state=ctc_state, att_map=None)]
# Attention decoding
for t in range(max_output_len):
for hypothesis in prev_top_hypothesis:
# Resume previous step
prev_token, prev_dec_state, prev_attn, prev_lm_state, prev_ctc_state = hypothesis.get_state(
device)
self.asr.set_state(prev_dec_state, prev_attn)
# Normal asr forward
attn, context = self.asr.attention(
self.asr.decoder.get_query(), encode_feature, encode_len)
asr_prev_token = self.asr.pre_embed(prev_token)
decoder_input = torch.cat([asr_prev_token, context], dim=-1)
cur_prob, d_state = self.asr.decoder(decoder_input)
# Embedding fusion (output shape 1xV)
if self.apply_emb:
_, cur_prob = self.emb_decoder( d_state, cur_prob, return_loss=False)
else:
cur_prob = F.log_softmax(cur_prob, dim=-1)
# Perform CTC prefix scoring on limited candidates (else OOM easily)
if self.apply_ctc:
# TODO : Check the performance drop for computing part of candidates only
_, ctc_candidates = cur_prob.squeeze(0).topk(self.ctc_beam_size, dim=-1)
candidates = ctc_candidates.cpu().tolist()
ctc_prob, ctc_state = ctc_prefix.cheap_compute(
hypothesis.outIndex, prev_ctc_state, candidates)
# TODO : study why ctc_char (slightly) > 0 sometimes
ctc_char = torch.FloatTensor(ctc_prob - hypothesis.ctc_prob).to(device)
# Combine CTC score and Attention score (HACK: focus on candidates, block others)
hack_ctc_char = torch.zeros_like(cur_prob).data.fill_(LOG_ZERO)
for idx, char in enumerate(candidates):
hack_ctc_char[0, char] = ctc_char[idx]
cur_prob = (1-self.ctc_w)*cur_prob + self.ctc_w*hack_ctc_char # ctc_char
cur_prob[0, 0] = LOG_ZERO # Hack to ignore <sos>
# Joint RNN-LM decoding
if self.apply_lm:
# assuming batch size always 1, resulting 1x1
lm_input = prev_token.unsqueeze(1)
lm_output, lm_state = self.lm(
lm_input, torch.ones([batch_size]), hidden=prev_lm_state)
# assuming batch size always 1, resulting 1xV
lm_output = lm_output.squeeze(0)
cur_prob += self.lm_w*lm_output.log_softmax(dim=-1)
# Beam search
# Note: Ignored batch dim.
topv, topi = cur_prob.squeeze(0).topk(self.beam_size)
prev_attn = self.asr.attention.att_layer.prev_att.cpu() if store_att else None
final, top = hypothesis.addTopk(topi, topv, self.asr.decoder.get_state(), att_map=prev_attn,
lm_state=lm_state, ctc_state=ctc_state, ctc_prob=ctc_prob,
ctc_candidates=candidates)
# Move complete hyps. out
if final is not None and (t >= min_output_len):
final_hypothesis.append(final)
if self.beam_size == 1:
return final_hypothesis
next_top_hypothesis.extend(top)
# Sort for top N beams
next_top_hypothesis.sort(key=lambda o: o.avgScore(), reverse=True)
prev_top_hypothesis = next_top_hypothesis[:self.beam_size]
next_top_hypothesis = []
# Rescore all hyp (finished/unfinished)
final_hypothesis += prev_top_hypothesis
final_hypothesis.sort(key=lambda o: o.avgScore(), reverse=True)
return final_hypothesis[:self.beam_size]
class Hypothesis:
'''Hypothesis for beam search decoding.
Stores the history of label sequence & score
Stores the previous decoder state, ctc state, ctc score, lm state and attention map (if necessary)'''
def __init__(self, decoder_state, output_seq, output_scores, lm_state, ctc_state, ctc_prob, att_map):
assert len(output_seq) == len(output_scores)
# attention decoder
self.decoder_state = decoder_state
self.att_map = att_map
# RNN language model
if type(lm_state) is tuple:
self.lm_state = (lm_state[0].cpu(),
lm_state[1].cpu()) # LSTM state
elif lm_state is None:
self.lm_state = None # Init state
else:
self.lm_state = lm_state.cpu() # GRU state
# Previous outputs
self.output_seq = output_seq # Prefix, List of list
self.output_scores = output_scores # Prefix score, list of float
# CTC decoding
self.ctc_state = ctc_state # List of np
self.ctc_prob = ctc_prob # List of float
def avgScore(self):
'''Return the averaged log probability of hypothesis'''
assert len(self.output_scores) != 0
return sum(self.output_scores) / len(self.output_scores)
def addTopk(self, topi, topv, decoder_state, att_map=None,
lm_state=None, ctc_state=None, ctc_prob=0.0, ctc_candidates=[]):
'''Expand current hypothesis with a given beam size'''
new_hypothesis = []
term_score = None
ctc_s, ctc_p = None, None
beam_size = topi.shape[-1]
for i in range(beam_size):
# Detect <eos>
if topi[i].item() == 1:
term_score = topv[i].cpu()
continue
idxes = self.output_seq[:] # pass by value
scores = self.output_scores[:] # pass by value
idxes.append(topi[i].cpu())
scores.append(topv[i].cpu())
if ctc_state is not None:
# ToDo: Handle out-of-candidate case.
idx = ctc_candidates.index(topi[i].item())
ctc_s = ctc_state[idx, :, :]
ctc_p = ctc_prob[idx]
new_hypothesis.append(Hypothesis(decoder_state,
output_seq=idxes, output_scores=scores, lm_state=lm_state,
ctc_state=ctc_s, ctc_prob=ctc_p, att_map=att_map))
if term_score is not None:
self.output_seq.append(torch.tensor(1))
self.output_scores.append(term_score)
return self, new_hypothesis
return None, new_hypothesis
def get_state(self, device):
prev_token = self.output_seq[-1] if len(self.output_seq) != 0 else 0
prev_token = torch.LongTensor([prev_token]).to(device)
att_map = self.att_map.to(device) if self.att_map is not None else None
if type(self.lm_state) is tuple:
lm_state = (self.lm_state[0].to(device),
self.lm_state[1].to(device)) # LSTM state
elif self.lm_state is None:
lm_state = None # Init state
else:
lm_state = self.lm_state.to(
device) # GRU state
return prev_token, self.decoder_state, att_map, lm_state, self.ctc_state
@property
def outIndex(self):
return [i.item() for i in self.output_seq]
|