Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import librosa
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
from train import ASR_Model
|
6 |
+
from model_cnn import Model
|
7 |
+
|
8 |
+
def pre(audio):
|
9 |
+
model = ASR_Model(device='cuda',model_path='model/model.pth',pinyin_path ='pinyin.txt')
|
10 |
+
|
11 |
+
result = model.predict(audio)
|
12 |
+
s = ''
|
13 |
+
for r in result:
|
14 |
+
s += r[0]+str(r[1])+' '
|
15 |
+
return s
|
16 |
+
|
17 |
+
def visualize(audio):
|
18 |
+
y, sr = librosa.load(audio, sr=None)
|
19 |
+
|
20 |
+
plt.figure(figsize=(10, 4))
|
21 |
+
librosa.display.waveshow(y, sr=sr)
|
22 |
+
plt.title("Waveform of the Audio")
|
23 |
+
plt.xlabel("Time (s)")
|
24 |
+
plt.ylabel("Amplitude")
|
25 |
+
|
26 |
+
image_path = "./waveform.png"
|
27 |
+
plt.savefig(image_path, format='png')
|
28 |
+
plt.close()
|
29 |
+
|
30 |
+
# print(audio)
|
31 |
+
|
32 |
+
return image_path, pre(audio)
|
33 |
+
|
34 |
+
#e = gr.Examples(examples=['./SSB10500228.wav'], inputs=[gr.File(type="filepath")])
|
35 |
+
|
36 |
+
demo = gr.Interface(fn=visualize, inputs=gr.File(file_types=['.wav'], label="wav file"),
|
37 |
+
outputs=[gr.Image(type="filepath", label="Waveform"),
|
38 |
+
gr.Textbox(type="text", label="Tone Evaluation Result")],
|
39 |
+
examples=["Examples/中原石化加油站.wav", "Examples/你叫什么名字你的名字.wav", "Examples/来一首许多年以后.wav"],
|
40 |
+
title="Mandarin Tone Evaluation")
|
41 |
+
|
42 |
+
|
43 |
+
demo.launch()
|