Spaces:
Runtime error
Runtime error
Commit
·
f1cf01a
1
Parent(s):
2d03bb7
Upload app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
-
import librosa
|
3 |
-
from transformers import AutoFeatureExtractor, pipeline
|
4 |
|
5 |
|
6 |
def load_and_fix_data(input_file, model_sampling_rate):
|
@@ -12,20 +12,26 @@ def load_and_fix_data(input_file, model_sampling_rate):
|
|
12 |
return speech
|
13 |
|
14 |
|
15 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
16 |
-
"anuragshas/wav2vec2-xls-r-1b-hi-with-lm"
|
17 |
-
)
|
18 |
sampling_rate = feature_extractor.sampling_rate
|
19 |
|
20 |
-
asr = pipeline(
|
21 |
-
"automatic-speech-recognition", model="anuragshas/wav2vec2-xls-r-1b-hi-with-lm"
|
22 |
-
)
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def predict_and_ctc_lm_decode(input_file):
|
26 |
speech = load_and_fix_data(input_file, sampling_rate)
|
27 |
transcribed_text = asr(speech, chunk_length_s=5, stride_length_s=1)
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
gr.Interface(
|
@@ -34,10 +40,10 @@ gr.Interface(
|
|
34 |
gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")
|
35 |
],
|
36 |
outputs=[gr.outputs.Textbox()],
|
37 |
-
examples=[["
|
38 |
-
title="
|
39 |
-
|
40 |
-
|
41 |
layout="horizontal",
|
42 |
theme="huggingface",
|
43 |
).launch(enable_queue=True, cache_examples=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
import librosa
|
3 |
+
from transformers import AutoFeatureExtractor, AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
|
4 |
|
5 |
|
6 |
def load_and_fix_data(input_file, model_sampling_rate):
|
|
|
12 |
return speech
|
13 |
|
14 |
|
15 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-spanish")
|
|
|
|
|
16 |
sampling_rate = feature_extractor.sampling_rate
|
17 |
|
18 |
+
asr = pipeline("automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-spanish")
|
|
|
|
|
19 |
|
20 |
|
21 |
+
|
22 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('hackathon-pln-es/t5-small-spanish-nahuatl')
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/t5-small-spanish-nahuatl')
|
24 |
+
|
25 |
+
new_line = '\n'
|
26 |
+
|
27 |
def predict_and_ctc_lm_decode(input_file):
|
28 |
speech = load_and_fix_data(input_file, sampling_rate)
|
29 |
transcribed_text = asr(speech, chunk_length_s=5, stride_length_s=1)
|
30 |
+
transcribed_text = transcribed_text["text"]
|
31 |
+
input_ids = tokenizer('translate Spanish to Nahuatl: ' + transcribed_text, return_tensors='pt').input_ids
|
32 |
+
outputs = model.generate(input_ids, max_length=512)
|
33 |
+
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
34 |
+
return f"Spanish Audio Transcription: {transcribed_text} {new_line} Nahuatl Translation :{outputs}"
|
35 |
|
36 |
|
37 |
gr.Interface(
|
|
|
40 |
gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")
|
41 |
],
|
42 |
outputs=[gr.outputs.Textbox()],
|
43 |
+
examples=[["audio1.wav"], ["travel.wav"]],
|
44 |
+
title="Spanish-Audio-Transcriptions-to-Nahuatl-Translation",
|
45 |
+
description = "This is a Gradio demo of Spanish Audio Transcriptions to Nahuatl Translation. To use this, simply provide an audio input (audio recording or via microphone), which will subsequently be transcribed and translated to Nahuatl language.",
|
46 |
+
#article="<p><center><img src='........e'></center></p>",
|
47 |
layout="horizontal",
|
48 |
theme="huggingface",
|
49 |
).launch(enable_queue=True, cache_examples=True)
|