File size: 9,716 Bytes
e8481f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import gradio as gr
import matplotlib.pyplot as plt
import torch
import seaborn as sns
import pandas as pd
import os
import os.path as osp
import ffmpeg
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
from torch.utils.data import Dataset, DataLoader

NUM_PER_BUCKET = 1000
NOISE_SIGMA = 1
Y_UB = 10
Y_LB = 0
K = 1
B = 0
NUM_SEG = 5
sns.set_theme(palette='colorblind')
NUM_EPOCHS = 100
PRINT_FREQ = NUM_EPOCHS // 20
NUM_TRAIN_SAMPLES = NUM_PER_BUCKET * NUM_SEG
BATCH_SIZE = 256


def make_dataframe(x, y, method=None):
    x = list(x[:, 0].detach().numpy())
    y = list(y[:, 0].detach().numpy())
    if method is not None:
        method = [method for _ in range(len(x))]
        df = pd.DataFrame({'x': x, 'y': y, 'Method': method})
    else:
        df = pd.DataFrame({'x': x, 'y': y})
    return df

Y_demo = torch.linspace(Y_LB, Y_UB, 2).unsqueeze(-1)
X_demo = (Y_demo - B) / K

df_oracle = make_dataframe(X_demo, Y_demo, 'Oracle')

def prepare_data():
    interval = (Y_UB - Y_LB) / NUM_SEG
    all_x, all_y = [], []
    for i in range(NUM_SEG):
        uniform_y_distribution = torch.distributions.Uniform(Y_UB - (i+1)*interval, Y_UB-i*interval)
        y_uniform = uniform_y_distribution.sample((NUM_TRAIN_SAMPLES, 1))

        noise_distribution = torch.distributions.Normal(loc=0, scale=NOISE_SIGMA)
        noise = noise_distribution.sample((NUM_TRAIN_SAMPLES, 1))
        y_uniform_oracle = y_uniform - noise

        x_uniform = (y_uniform_oracle - B) / K
        all_x.append(x_uniform)
        all_y.append(y_uniform)
    return all_x, all_y

def select_data(all_x, all_y, sel_num):
    sel_x, sel_y = [], []
    prob = []
    for i in range(NUM_SEG):
        sel_x += all_x[i][:sel_num[i]]
        sel_y += all_y[i][:sel_num[i]]
        prob += [torch.tensor(sel_num[i]).float() for _ in range(sel_num[i])]
    sel_x = torch.stack(sel_x)
    sel_y = torch.stack(sel_y)
    prob = torch.stack(prob)
    return sel_x, sel_y, prob


def unzip_dataloader(training_loader):
    all_x = []
    all_y = []
    for data, label, _ in training_loader:
        all_x.append(data)
        all_y.append(label)
    all_x = torch.cat(all_x)
    all_y = torch.cat(all_y)
    return all_x, all_y

# Train the model
def train(train_loader, training_bundle, num_epochs):
    training_df = make_dataframe(*unzip_dataloader(train_loader))
    for epoch in range(num_epochs):
        for model, optimizer, scheduler, criterion, criterion_name in training_bundle:
            model.train()
            for data, target, prob in train_loader:
                optimizer.zero_grad()
                pred = model(data)
                if criterion_name == 'Reweight':
                    loss = criterion(pred, target, prob)
                else:
                    loss = criterion(pred, target)
                loss.backward()
                optimizer.step()
            scheduler.step()
        if (epoch + 1) % PRINT_FREQ == 0:
            visualize(training_df, training_bundle, epoch)

def visualize(training_df, training_bundle, epoch):
    df = df_oracle
    for model, optimizer, scheduler, criterion, criterion_name in training_bundle:
        model.eval()
        y = model(X_demo)
        df = df.append(make_dataframe(X_demo, y, criterion_name), ignore_index=True)
    sns.lineplot(data=df, x='x', y='y', hue='Method', estimator=None, ci=None)
    sns.scatterplot(data=training_df, x='x', y='y', color='#003ea1', alpha=0.05, linewidths=0, s=100)
    plt.xlim((Y_LB - B) / K, (Y_UB - B) / K)
    plt.ylim(Y_LB, Y_UB)
    plt.gca().axes.set_xlabel(r'$x$', fontsize=10)
    plt.gca().axes.set_ylabel(r'$y$', fontsize=10)
    plt.savefig('train_log/{:05d}.png'.format(epoch+1), bbox_inches='tight')
    plt.close()



def make_video():
    if osp.isfile('movie.mp4'):
        os.remove('movie.mp4')
    (
        ffmpeg
            .input('train_log/*.png', pattern_type='glob', framerate=3)
            .output('movie.mp4')
            .run()
    )

class ReweightL2(_Loss):
    def __init__(self, reweight='inverse'):
        super(ReweightL2, self).__init__()
        self.reweight = reweight

    def forward(self, pred, target, prob):
        reweight = self.reweight
        if reweight == 'inverse':
            inv_prob = prob.pow(-1)
        elif reweight == 'sqrt_inv':
            inv_prob = prob.pow(-0.5)
        else:
            raise NotImplementedError
        inv_prob = inv_prob / inv_prob.sum()
        loss = F.mse_loss(pred, target, reduction='none').sum(-1) * inv_prob
        loss = loss.sum()
        return loss

# we use a linear layer to regress the weight from height
class LinearModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LinearModel, self).__init__()
        self.mlp = nn.Sequential(
            nn.Linear(input_dim, output_dim),
        )

    def forward(self, x):
        x = self.mlp(x)
        return x

def prepare_model():
    model = LinearModel(input_dim=1, output_dim=1)
    optimizer = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=NUM_EPOCHS)
    return model, optimizer, scheduler


class BMCLoss(_Loss):
    def __init__(self):
        super(BMCLoss, self).__init__()
        self.noise_sigma = NOISE_SIGMA

    def forward(self, pred, target):
        pred = pred.reshape(-1, 1)
        target = target.reshape(-1, 1)
        noise_var = self.noise_sigma ** 2
        loss = bmc_loss(pred, target, noise_var)
        return loss


def bmc_loss(pred, target, noise_var):
    logits = - 0.5 * (pred - target.T).pow(2) / noise_var
    loss = F.cross_entropy(logits, torch.arange(pred.shape[0]))

    return loss * (2 * noise_var)

def regress(train_loader):
    training_bundle = []
    criterions = {
        'MSE': torch.nn.MSELoss(),
        'Reweight': ReweightL2(),
        'Balanced MSE': BMCLoss(),
    }
    for criterion_name in criterions:
        criterion = criterions[criterion_name]
        model, optimizer, scheduler = prepare_model()
        training_bundle.append((model, optimizer, scheduler, criterion, criterion_name))
    train(train_loader, training_bundle, NUM_EPOCHS)

class DummyDataset(Dataset):
    def __init__(self, inputs, targets, prob):
        self.inputs = inputs
        self.targets = targets
        self.prob = prob

    def __getitem__(self, index):
        return self.inputs[index], self.targets[index], self.prob[index]

    def __len__(self):
        return len(self.inputs)

def run(num1, num2, num3, num4, num5, random_seed, submit):
    sel_num = [num1, num2, num3, num4, num5]
    sel_num = [int(num/100*NUM_PER_BUCKET) for num in sel_num]
    torch.manual_seed(int(random_seed))
    all_x, all_y = prepare_data()
    sel_x, sel_y, prob = select_data(all_x, all_y, sel_num)
    train_loader = DataLoader(DummyDataset(sel_x, sel_y, prob), BATCH_SIZE, shuffle=True)

    training_df = make_dataframe(sel_x, sel_y)
    g = sns.jointplot(data=training_df, x='x', y='y', color='#003ea1', alpha=0.1, linewidths=0, s=100,
                      marginal_kws=dict(bins=torch.linspace(Y_LB, Y_UB, steps=NUM_SEG+1), rug=True),
                      xlim=((Y_LB - B) / K, (Y_UB - B) / K),
                      ylim=(Y_LB, Y_UB),
                      space=0.1,
                      height=8,
                      ratio=2
    )
    g.ax_marg_x.remove()
    sns.lineplot(data=df_oracle, x='x', y='y', hue='Method', ax=g.ax_joint, legend=False)
    plt.gca().axes.set_xlabel(r'$x$', fontsize=10)
    plt.gca().axes.set_ylabel(r'$y$', fontsize=10)
    plt.savefig('training_data.png',bbox_inches='tight')
    plt.close()

    if submit == 0:
        text = "Press \"Start Regressing!\" if your are happy with the training data"
    else:
        text = "Press \"Prepare Training Data\" to change the training data"
    if submit == 1:
        if not osp.exists('train_log'):
            os.mkdir('train_log')
        for f in os.listdir('train_log'):
            os.remove(osp.join('train_log', f))
        regress(train_loader)
        make_video()
    output = 'train_log/{:05d}.png'.format(NUM_EPOCHS) if submit==1 else None
    video = "movie.mp4" if submit==1 else None
    return 'training_data.png', text, output, video


iface = gr.Interface(
    fn=run,
    inputs=[
            gr.inputs.Slider(0, 100, default=2, step=1, label='Label percentage in [0, 2)'),
            gr.inputs.Slider(0, 100, default=20, step=1, label='Label percentage in [2, 4)'),
            gr.inputs.Slider(0, 100, default=100, step=1, label='Label percentage in [4, 6)'),
            gr.inputs.Slider(0, 100, default=20, step=1, label='Label percentage in [6, 8)'),
            gr.inputs.Slider(0, 100, default=2, step=1, label='Label percentage in [8, 10)'),
            gr.inputs.Number(default=0, label='Random Seed', optional=False),
            gr.inputs.Radio(['Prepare Training Data', 'Start Regressing!'],
                            type="index", default=None, label='Mode', optional=False),
            ],
    outputs=[
        gr.outputs.Image(type="file", label="Training data"),
        gr.outputs.Textbox(type="auto", label='What\' s next?'),
        gr.outputs.Image(type="file", label="Regression result"),
        gr.outputs.Video(type='mp4', label='Training process')
    ],
    live=True,
    allow_flagging='never',
    title="Balanced MSE for Imbalanced Visual Regression [CVPR 2022]",
    description="Welcome to the demo for Balanced MSE &#9878;. In this demo, we will work on a simple task: imbalanced <i>linear</i> regression. <br>"
                "To get started, drag the sliders &#128071;&#128071; and create your label distribution!"
)
iface.launch()