Spaces:
Runtime error
Runtime error
jiawei-ren
commited on
Commit
·
a36eee8
1
Parent(s):
892a4c2
init
Browse files
app.py
CHANGED
@@ -237,7 +237,7 @@ def clean_up_logs():
|
|
237 |
os.remove(f)
|
238 |
|
239 |
|
240 |
-
def run(num1, num2, num3, num4, num5, random_seed,
|
241 |
sel_num = [num1, num2, num3, num4, num5]
|
242 |
sel_num = [int(num / 100 * NUM_PER_BUCKET) for num in sel_num]
|
243 |
torch.manual_seed(int(random_seed))
|
@@ -246,18 +246,18 @@ def run(num1, num2, num3, num4, num5, random_seed, submit):
|
|
246 |
training_df = make_dataframe(all_x, all_y)
|
247 |
|
248 |
clean_up_logs()
|
249 |
-
if
|
250 |
visualize(training_df, df_oracle, 'training_data.png')
|
251 |
-
if
|
252 |
regress(train_loader, training_df)
|
253 |
make_video()
|
254 |
-
if
|
255 |
text = "Press \"Start Regressing\" if your are happy with the training data. Regression takes ~10s."
|
256 |
else:
|
257 |
text = "Press \"Prepare Training Data\" before moving the sliders. You may also change the random seed."
|
258 |
-
training_data_plot = 'training_data.png' if
|
259 |
-
output = 'regression_result.png'.format(NUM_EPOCHS) if
|
260 |
-
video = "movie.mp4" if
|
261 |
return training_data_plot, output, video, text
|
262 |
|
263 |
|
|
|
237 |
os.remove(f)
|
238 |
|
239 |
|
240 |
+
def run(num1, num2, num3, num4, num5, random_seed, mode):
|
241 |
sel_num = [num1, num2, num3, num4, num5]
|
242 |
sel_num = [int(num / 100 * NUM_PER_BUCKET) for num in sel_num]
|
243 |
torch.manual_seed(int(random_seed))
|
|
|
246 |
training_df = make_dataframe(all_x, all_y)
|
247 |
|
248 |
clean_up_logs()
|
249 |
+
if mode == 0:
|
250 |
visualize(training_df, df_oracle, 'training_data.png')
|
251 |
+
if mode == 1:
|
252 |
regress(train_loader, training_df)
|
253 |
make_video()
|
254 |
+
if mode == 0:
|
255 |
text = "Press \"Start Regressing\" if your are happy with the training data. Regression takes ~10s."
|
256 |
else:
|
257 |
text = "Press \"Prepare Training Data\" before moving the sliders. You may also change the random seed."
|
258 |
+
training_data_plot = 'training_data.png' if mode == 0 else None
|
259 |
+
output = 'regression_result.png'.format(NUM_EPOCHS) if mode == 1 else None
|
260 |
+
video = "movie.mp4" if mode == 1 else None
|
261 |
return training_data_plot, output, video, text
|
262 |
|
263 |
|