File size: 7,641 Bytes
a001524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import copy

import torch
import numpy as np
import gradio as gr
from spoter_mod.skeleton_extractor import obtain_pose_data
from spoter_mod.normalization.body_normalization import normalize_single_dict as normalize_single_body_dict, BODY_IDENTIFIERS
from spoter_mod.normalization.hand_normalization import normalize_single_dict as normalize_single_hand_dict, HAND_IDENTIFIERS


model = torch.load("spoter-checkpoint.pth", map_location=torch.device('cpu'))
model.train(False)

HAND_IDENTIFIERS = [id + "_Left" for id in HAND_IDENTIFIERS] + [id + "_Right" for id in HAND_IDENTIFIERS]
GLOSS = ['book', 'drink', 'computer', 'before', 'chair', 'go', 'clothes', 'who', 'candy', 'cousin', 'deaf', 'fine',
         'help', 'no', 'thin', 'walk', 'year', 'yes', 'all', 'black', 'cool', 'finish', 'hot', 'like', 'many', 'mother',
         'now', 'orange', 'table', 'thanksgiving', 'what', 'woman', 'bed', 'blue', 'bowling', 'can', 'dog', 'family',
         'fish', 'graduate', 'hat', 'hearing', 'kiss', 'language', 'later', 'man', 'shirt', 'study', 'tall', 'white',
         'wrong', 'accident', 'apple', 'bird', 'change', 'color', 'corn', 'cow', 'dance', 'dark', 'doctor', 'eat',
         'enjoy', 'forget', 'give', 'last', 'meet', 'pink', 'pizza', 'play', 'school', 'secretary', 'short', 'time',
         'want', 'work', 'africa', 'basketball', 'birthday', 'brown', 'but', 'cheat', 'city', 'cook', 'decide', 'full',
         'how', 'jacket', 'letter', 'medicine', 'need', 'paint', 'paper', 'pull', 'purple', 'right', 'same', 'son',
         'tell', 'thursday']

device = torch.device("cpu")
if torch.cuda.is_available():
    device = torch.device("cuda")


def tensor_to_dictionary(landmarks_tensor: torch.Tensor) -> dict:

    data_array = landmarks_tensor.numpy()
    output = {}

    for landmark_index, identifier in enumerate(BODY_IDENTIFIERS + HAND_IDENTIFIERS):
        output[identifier] = data_array[:, landmark_index]

    return output


def dictionary_to_tensor(landmarks_dict: dict) -> torch.Tensor:

    output = np.empty(shape=(len(landmarks_dict["leftEar"]), len(BODY_IDENTIFIERS + HAND_IDENTIFIERS), 2))

    for landmark_index, identifier in enumerate(BODY_IDENTIFIERS + HAND_IDENTIFIERS):
        output[:, landmark_index, 0] = [frame[0] for frame in landmarks_dict[identifier]]
        output[:, landmark_index, 1] = [frame[1] for frame in landmarks_dict[identifier]]

    return torch.from_numpy(output)


def greet(label, video0, video1):

    if label == "Webcam":
        video = video0

    elif label == "Video":
        video = video1

    elif label == "X":
        return {"A": 0.8, "B": 0.1, "C": 0.1}

    else:
        return {}

    data = obtain_pose_data(video)

    depth_map = np.empty(shape=(len(data.data_hub["nose_X"]), len(BODY_IDENTIFIERS + HAND_IDENTIFIERS), 2))

    for index, identifier in enumerate(BODY_IDENTIFIERS + HAND_IDENTIFIERS):
        depth_map[:, index, 0] = data.data_hub[identifier + "_X"]
        depth_map[:, index, 1] = data.data_hub[identifier + "_Y"]

    depth_map = torch.from_numpy(np.copy(depth_map))

    depth_map = tensor_to_dictionary(depth_map)

    keys = copy.copy(list(depth_map.keys()))
    for key in keys:
        data = depth_map[key]
        del depth_map[key]
        depth_map[key.replace("_Left", "_0").replace("_Right", "_1")] = data

    depth_map = normalize_single_body_dict(depth_map)
    depth_map = normalize_single_hand_dict(depth_map)

    keys = copy.copy(list(depth_map.keys()))
    for key in keys:
        data = depth_map[key]
        del depth_map[key]
        depth_map[key.replace("_0", "_Left").replace("_1", "_Right")] = data

    depth_map = dictionary_to_tensor(depth_map)

    depth_map = depth_map - 0.5

    inputs = depth_map.squeeze(0).to(device)
    outputs = model(inputs).expand(1, -1, -1)
    results = torch.nn.functional.softmax(outputs, dim=2).detach().numpy()[0, 0]

    results = {GLOSS[i]: float(results[i]) for i in range(100)}

    return results


label = gr.outputs.Label(num_top_classes=5, label="Top class probabilities")
demo = gr.Interface(fn=greet, inputs=[gr.Dropdown(["Webcam", "Video"], label="Please select the input type:", type="value"), gr.Video(source="webcam", label="Webcam recording", type="mp4"), gr.Video(source="upload", label="Video upload", type="mp4")], outputs=label,
                    title="SPOTER Sign language recognition",
                    description="",
                    article="This is joint work of [Matyas Bohacek](https://scholar.google.cz/citations?user=wDy1xBwAAAAJ) and [Zhuo Cao](https://www.linkedin.com/in/zhuo-cao-b0787a1aa/?originalSubdomain=hk). For more info, visit [our website.](https://www.signlanguagerecognition.com)",
                    css="""
                            @font-face {
                                font-family: Graphik;
                                font-weight: regular;
                                src: url("https://www.signlanguagerecognition.com/supplementary/GraphikRegular.otf") format("opentype");
                            }

                            @font-face {
                                font-family: Graphik;
                                font-weight: bold;
                                src: url("https://www.signlanguagerecognition.com/supplementary/GraphikBold.otf") format("opentype");
                            }

                            @font-face {
                                font-family: MonumentExpanded;
                                font-weight: regular;
                                src: url("https://www.signlanguagerecognition.com/supplementary/MonumentExtended-Regular.otf") format("opentype");
                            }

                            @font-face {
                                font-family: MonumentExpanded;
                                font-weight: bold;
                                src: url("https://www.signlanguagerecognition.com/supplementary/MonumentExtended-Bold.otf") format("opentype");
                            }

                            html {
                                font-family: "Graphik";
                            }   

                            h1 {
                                font-family: "MonumentExpanded";
                            }

                            #12 {
        -                       background-image: linear-gradient(to left, #61D836, #6CB346) !important;
                                background-color: #61D836 !important;
                            }

                            #12:hover {
        -                       background-image: linear-gradient(to left, #61D836, #6CB346) !important;
                                background-color: #6CB346 !important;
                                border: 0 !important;
                                border-color: 0 !important;
                            }

                            .dark .gr-button-primary {
                                --tw-gradient-from: #61D836;
                                --tw-gradient-to: #6CB346;
                                border: 0 !important;
                                border-color: 0 !important;
                            }

                            .dark .gr-button-primary:hover {
                                --tw-gradient-from: #64A642;
                                --tw-gradient-to: #58933B;
                                border: 0 !important;
                                border-color: 0 !important;
                            }
                           """,
                            cache_examples=True
                    )

demo.launch(debug=True)