Matyáš Boháček commited on
Commit
925935d
·
1 Parent(s): ad2fc15

Update the description

Browse files
Files changed (1) hide show
  1. app.py +1 -1
app.py CHANGED
@@ -112,7 +112,7 @@ Our efforts on lightweight and efficient models for sign language recognition we
112
  - **WACV2022** - Original SPOTER paper - [Paper](https://openaccess.thecvf.com/content/WACV2022W/HADCV/papers/Bohacek_Sign_Pose-Based_Transformer_for_Word-Level_Sign_Language_Recognition_WACVW_2022_paper.pdf), [Code](https://github.com/matyasbohacek/spoter)
113
  - **CVPR2022 (AVA Worshop)** - Follow-up WIP – [Extended Abstract](https://drive.google.com/file/d/1Szbhi7ZwZ6VAWAcGcDDU6qV9Uj9xnDsS/view?usp=sharing), [Poster](https://drive.google.com/file/d/1_xvmTNbLjTrx6psKdsLkufAtfmI5wfbF/view?usp=sharing)
114
  ### How to sign?
115
- The model wrapped in this demo was trained on [WLASL100](https://dxli94.github.io/WLASL/), so it only knows selected ASL vocabulary. Take a look at these tutorial video examples, try to replicate them yourself, and have them recognized using the webcam capture below. Have fun!""",
116
  article="This is joint work of [Matyas Bohacek](https://scholar.google.cz/citations?user=wDy1xBwAAAAJ) and [Zhuo Cao](https://www.linkedin.com/in/zhuo-cao-b0787a1aa/?originalSubdomain=hk). For more info, visit [our website.](https://www.signlanguagerecognition.com)",
117
  css="""
118
  @font-face {
 
112
  - **WACV2022** - Original SPOTER paper - [Paper](https://openaccess.thecvf.com/content/WACV2022W/HADCV/papers/Bohacek_Sign_Pose-Based_Transformer_for_Word-Level_Sign_Language_Recognition_WACVW_2022_paper.pdf), [Code](https://github.com/matyasbohacek/spoter)
113
  - **CVPR2022 (AVA Worshop)** - Follow-up WIP – [Extended Abstract](https://drive.google.com/file/d/1Szbhi7ZwZ6VAWAcGcDDU6qV9Uj9xnDsS/view?usp=sharing), [Poster](https://drive.google.com/file/d/1_xvmTNbLjTrx6psKdsLkufAtfmI5wfbF/view?usp=sharing)
114
  ### How to sign?
115
+ The model wrapped in this demo was trained on [WLASL100](https://dxli94.github.io/WLASL/), so it only knows selected ASL vocabulary. Take a look at these tutorial video examples (this is how you sign [computer](https://www.handspeak.com/word/search/index.php?id=449), [work](https://www.handspeak.com/word/search/index.php?id=2423), or [time](https://www.handspeak.com/word/search/index.php?id=2223)), try to replicate them yourself, and have them recognized using the webcam capture below. Have fun!""",
116
  article="This is joint work of [Matyas Bohacek](https://scholar.google.cz/citations?user=wDy1xBwAAAAJ) and [Zhuo Cao](https://www.linkedin.com/in/zhuo-cao-b0787a1aa/?originalSubdomain=hk). For more info, visit [our website.](https://www.signlanguagerecognition.com)",
117
  css="""
118
  @font-face {