tareknaous commited on
Commit
e69a8dd
·
1 Parent(s): cf5577a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -5
app.py CHANGED
@@ -16,7 +16,6 @@ from huggingface_hub.keras_mixin import from_pretrained_keras
16
  from itertools import cycle, islice
17
 
18
 
19
- model = from_pretrained_keras("tareknaous/unet-visual-clustering")
20
 
21
 
22
  #Function that predicts on only 1 sample
@@ -50,6 +49,7 @@ def create_input_image(data, visualize=False):
50
 
51
  return input
52
 
 
53
 
54
 
55
  def get_instances(prediction, data, max_filter_size=1):
@@ -124,7 +124,7 @@ def get_instances(prediction, data, max_filter_size=1):
124
 
125
 
126
 
127
- def visual_clustering(cluster_type, num_clusters, num_samples, random_state, median_kernel_size, max_kernel_size):
128
 
129
  NUM_CLUSTERS = num_clusters
130
  CLUSTER_STD = 4 * np.ones(NUM_CLUSTERS)
@@ -143,10 +143,10 @@ def visual_clustering(cluster_type, num_clusters, num_samples, random_state, med
143
  data = (X_aniso, y)
144
 
145
  elif cluster_type == "noisy moons":
146
- data = datasets.make_moons(n_samples=num_samples, noise=.05)
147
 
148
  elif cluster_type == "noisy circles":
149
- data = datasets.make_circles(n_samples=num_samples, factor=.01, noise=.05)
150
 
151
  max_x = max(data[0][:, 0])
152
  min_x = min(data[0][:, 0])
@@ -184,6 +184,8 @@ def visual_clustering(cluster_type, num_clusters, num_samples, random_state, med
184
 
185
  return fig1, fig2
186
 
 
 
187
 
188
  iface = gr.Interface(
189
 
@@ -193,6 +195,7 @@ iface = gr.Interface(
193
  gr.inputs.Dropdown(["blobs", "varied blobs", "aniso", "noisy moons", "noisy circles" ]),
194
  gr.inputs.Slider(1, 10, step=1, label='Number of Clusters'),
195
  gr.inputs.Slider(10000, 1000000, step=10000, label='Number of Samples'),
 
196
  gr.inputs.Slider(1, 100, step=1, label='Random State'),
197
  gr.inputs.Slider(1, 100, step=1, label='Denoising Filter Kernel Size'),
198
  gr.inputs.Slider(1,100, step=1, label='Max Filter Kernel Size')
@@ -201,6 +204,9 @@ iface = gr.Interface(
201
  outputs=[
202
  gr.outputs.Image(type='plot', label='Dataset'),
203
  gr.outputs.Image(type='plot', label='Clustering Result')
204
- ]
 
 
 
205
  )
206
  iface.launch(debug=True)
 
16
  from itertools import cycle, islice
17
 
18
 
 
19
 
20
 
21
  #Function that predicts on only 1 sample
 
49
 
50
  return input
51
 
52
+ model = from_pretrained_keras("tareknaous/unet-visual-clustering")
53
 
54
 
55
  def get_instances(prediction, data, max_filter_size=1):
 
124
 
125
 
126
 
127
+ def visual_clustering(cluster_type, num_clusters, num_samples, noise, random_state, median_kernel_size, max_kernel_size):
128
 
129
  NUM_CLUSTERS = num_clusters
130
  CLUSTER_STD = 4 * np.ones(NUM_CLUSTERS)
 
143
  data = (X_aniso, y)
144
 
145
  elif cluster_type == "noisy moons":
146
+ data = datasets.make_moons(n_samples=num_samples, noise=noise)
147
 
148
  elif cluster_type == "noisy circles":
149
+ data = datasets.make_circles(n_samples=num_samples, factor=.01, noise=noise)
150
 
151
  max_x = max(data[0][:, 0])
152
  min_x = min(data[0][:, 0])
 
184
 
185
  return fig1, fig2
186
 
187
+ title = "Clustering Plotted Data by Image Segmentation"
188
+ description = "Gradio Demo for Visual Clustering on synthetic datasets"
189
 
190
  iface = gr.Interface(
191
 
 
195
  gr.inputs.Dropdown(["blobs", "varied blobs", "aniso", "noisy moons", "noisy circles" ]),
196
  gr.inputs.Slider(1, 10, step=1, label='Number of Clusters'),
197
  gr.inputs.Slider(10000, 1000000, step=10000, label='Number of Samples'),
198
+ gr.inputs.Slider(0.03, 0.1, step=0.01, label='Noise'),
199
  gr.inputs.Slider(1, 100, step=1, label='Random State'),
200
  gr.inputs.Slider(1, 100, step=1, label='Denoising Filter Kernel Size'),
201
  gr.inputs.Slider(1,100, step=1, label='Max Filter Kernel Size')
 
204
  outputs=[
205
  gr.outputs.Image(type='plot', label='Dataset'),
206
  gr.outputs.Image(type='plot', label='Clustering Result')
207
+ ],
208
+
209
+ title=title,
210
+ description=description,
211
  )
212
  iface.launch(debug=True)