Cacau commited on
Commit
831b048
·
1 Parent(s): efcf8a5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -14
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import gradio as gr
 
2
  import requests
3
  import io
4
  from PIL import Image
@@ -6,24 +7,12 @@ from transformers import pipeline
6
  from torchvision import transforms
7
 
8
  title = "Fine Tuned SD Model - Authoral stylization"
9
- description = "Automatically remove the image background from a profile photo."
10
  article = "<p style='text-align: center'><a href='https://news.machinelearning.sg/posts/beautiful_profile_pics_remove_background_image_with_deeplabv3/'>Blog</a> | <a href='https://github.com/eugenesiow/practical-ml'>Github Repo</a></p>"
11
 
12
 
13
  gr.Interface.load(
14
- "spaces/eugenesiow/remove-bg",
15
-
16
- inputs=[gr.Image(label="Input Image", source="webcam")]
17
- ).launch()
18
-
19
- def greet(name):
20
- return "Hello " + name + "!!"
21
-
22
- with gr.Blocks(theme=gr.themes.Glass()) as demo:
23
- name = gr.Textbox(label="Name")
24
- output = gr.Textbox(label="Output Box")
25
- greet_btn = gr.Button("Greet")
26
- greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")
27
 
28
  demo = gr.Interface(
29
  fn=greet,
@@ -31,4 +20,23 @@ demo = gr.Interface(
31
  outputs="text",
32
  )
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  demo.launch()
 
1
  import gradio as gr
2
+ import transforms
3
  import requests
4
  import io
5
  from PIL import Image
 
7
  from torchvision import transforms
8
 
9
  title = "Fine Tuned SD Model - Authoral stylization"
10
+ description = "Generate images trained in an authoral illustration model."
11
  article = "<p style='text-align: center'><a href='https://news.machinelearning.sg/posts/beautiful_profile_pics_remove_background_image_with_deeplabv3/'>Blog</a> | <a href='https://github.com/eugenesiow/practical-ml'>Github Repo</a></p>"
12
 
13
 
14
  gr.Interface.load(
15
+ "spaces/Cacau/heart-of-painting",
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  demo = gr.Interface(
18
  fn=greet,
 
20
  outputs="text",
21
  )
22
 
23
+
24
+ with gr.Blocks(theme=gr.themes.Glass()) as demo:
25
+ inputs=[gr.Textbox(label="Prompt", source="input box")]
26
+ output=[gr.Ima]
27
+ ).launch()
28
+
29
+ def query(payload):
30
+ response = requests.post(API_URL, headers=headers, json=payload)
31
+ return response.content
32
+ image_bytes = query({
33
+ "inputs":gr.Textbox(lines=2, placeholder="Your prompt here..."),
34
+ })
35
+
36
+ # You can access the image with PIL.Image for example
37
+ import io
38
+ from PIL import Image
39
+ image = Image.open(io.BytesIO(image_bytes))
40
+
41
+ return "This is your generated image:" + image "**Save it in your files!"
42
  demo.launch()