import gradio as gr import transforms import requests import io from PIL import Image from transformers import pipeline from torchvision import transforms title = "Fine Tuned SD Model - Authoral stylization" description = "Generate images trained in an authoral illustration model." article = "
" gr.Interface.load( "spaces/Cacau/heart-of-painting", demo = gr.Interface( fn=greet, inputs=gr.Textbox(lines=2, placeholder="Name Here..."), outputs="text", ) with gr.Blocks(theme=gr.themes.Glass()) as demo: inputs=[gr.Textbox(label="Prompt", source="input box")] output=[gr.Ima] ).launch() def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.content image_bytes = query({ "inputs":gr.Textbox(lines=2, placeholder="Your prompt here..."), }) # You can access the image with PIL.Image for example import io from PIL import Image image = Image.open(io.BytesIO(image_bytes)) return "This is your generated image:" + image "**Save it in your files!" demo.launch()