FinanceReport / app.py
Cachoups's picture
Update app.py
c6b10c9 verified
raw
history blame
16.9 kB
import os
import gradio as gr
from transformers import pipeline
import spacy
import lib.read_pdf
import pandas as pd
import re
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import io
# Initialize spaCy model
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe('sentencizer')
def split_in_sentences(text):
doc = nlp(text)
return [str(sent).strip() for sent in doc.sents]
def make_spans(text, results):
results_list = [res['label'] for res in results]
facts_spans = list(zip(split_in_sentences(text), results_list))
return facts_spans
# Initialize pipelines
summarizer = pipeline("summarization", model="human-centered-summarization/financial-summarization-pegasus")
fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
fin_model_bis = pipeline("sentiment-analysis", model='ProsusAI/finbert', tokenizer='ProsusAI/finbert')
table_to_text = pipeline('text2text-generation', model='google/flan-t5-large')
def summarize_text(text):
resp = summarizer(text)
return resp[0]['summary_text']
def text_to_sentiment(text):
sentiment = fin_model(text)[0]["label"]
return sentiment
def fin_ext(text):
results = fin_model(split_in_sentences(text))
return make_spans(text, results)
def fin_ext_bis(text):
results = fin_model_bis(split_in_sentences(text))
return make_spans(text, results)
def extract_and_paragraph(pdf1, pdf2, paragraph):
if not pdf1 or not pdf2:
return [], []
pdf1_path = os.path.join(PDF_FOLDER, pdf1)
pdf2_path = os.path.join(PDF_FOLDER, pdf2)
# Extract and format paragraphs
paragraphs_1 = lib.read_pdf.extract_and_format_paragraphs(pdf1_path)
paragraphs_2 = lib.read_pdf.extract_and_format_paragraphs(pdf2_path)
start_keyword = "Main risks to"
end_keywords = ["4. Appendix", "Annex:", "4. Annex", "Detailed tables", "ACKNOWLEDGEMENTS", "STATISTICAL ANNEX", "PROSPECTS BY MEMBER STATES"]
start_index1, end_index1 = lib.read_pdf.find_text_range(paragraphs_1, start_keyword, end_keywords)
start_index2, end_index2 = lib.read_pdf.find_text_range(paragraphs_2, start_keyword, end_keywords)
paragraphs_1 = lib.read_pdf.extract_relevant_text(paragraphs_1, start_index1, end_index1)
paragraphs_2 = lib.read_pdf.extract_relevant_text(paragraphs_2, start_index2, end_index2)
if paragraph:
paragraphs_1 = lib.read_pdf.split_text_into_paragraphs(paragraphs_1, 0)
paragraphs_2 = lib.read_pdf.split_text_into_paragraphs(paragraphs_2, 0)
return paragraphs_1, paragraphs_2
# Gradio interface setup
PDF_FOLDER = "data"
def get_pdf_files(folder):
return [f for f in os.listdir(folder) if f.endswith('.pdf')]
def show(name):
return f"{name}"
def get_excel_files(folder):
return [f for f in os.listdir(folder) if f.endswith('.xlsx')]
def get_sheet_names(file):
xls = pd.ExcelFile(os.path.join(PDF_FOLDER, file))
return gr.update(choices=xls.sheet_names)
def process_and_compare(file1, sheet1, file2, sheet2):
def process_file(file_path, sheet_name):
# Extract year from file name
year = int(re.search(r'(\d{4})', file_path).group(1))
# Load the Excel file
df = pd.read_excel(os.path.join(PDF_FOLDER, file_path), sheet_name=sheet_name, index_col=0)
# Define expected columns based on extracted year
historical_col = f'Historical {year - 1}'
baseline_cols = [f'Baseline {year}', f'Baseline {year + 1}', f'Baseline {year + 2}']
adverse_cols = [f'Adverse {year}', f'Adverse {year + 1}', f'Adverse {year + 2}']
level_deviation_col = f'Level Deviation {year + 2}'
# Drop rows and reset index
df = df.iloc[4:].reset_index(drop=True)
# Define the new column names
new_columns = ['Country', 'Code', historical_col] + baseline_cols + adverse_cols + ['Adverse Cumulative', 'Adverse Minimum', level_deviation_col]
# Ensure the number of columns matches
if len(df.columns) == len(new_columns):
df.columns = new_columns
else:
raise ValueError(f"Expected {len(new_columns)} columns, but found {len(df.columns)} columns in the data.")
columns = ['Country', f'Adverse {year}', f'Adverse {year+1}', f'Adverse {year+2}', 'Adverse Cumulative']
return df, df[columns]
# Process both files
global stored_df1, stored_df2
df1, stored_df1 = process_file(file1, sheet1)
df2, stored_df2 = process_file(file2, sheet2)
year1 = int(re.search(r'(\d{4})', file1).group(1))
year2 = int(re.search(r'(\d{4})', file2).group(1))
# Merge dataframes on 'Country'
merged_df = pd.merge(df2, df1, on='Country', suffixes=(f'_{year1}', f'_{year2}'))
merged_df['Difference adverse cumulative growth'] = merged_df[f'Adverse Cumulative_{year2}'] - merged_df[f'Adverse Cumulative_{year1}']
# Ensure data types are correct
merged_df['Country'] = merged_df['Country'].astype(str)
merged_df['Difference adverse cumulative growth'] = pd.to_numeric(merged_df['Difference adverse cumulative growth'], errors='coerce')
# Create histogram plot with color coding
fig, ax = plt.subplots(figsize=(12, 8))
colors = plt.get_cmap('tab20').colors # Use a colormap with multiple colors
num_countries = len(merged_df['Country'])
bars = ax.bar(merged_df['Country'], merged_df['Difference adverse cumulative growth'], color=colors[:num_countries])
# Add a legend
handles = [patches.Patch(color=color, label=country) for color, country in zip(colors[:num_countries], merged_df['Country'])]
ax.legend(handles=handles, title='Countries', bbox_to_anchor=(1.05, 1), loc='upper left')
ax.set_title(f'Histogram of Difference between Adverse cumulative growth of {year2} and {year1} for {sheet1}')
ax.set_xlabel('Country')
ax.set_ylabel('Difference')
plt.xticks(rotation=90)
# Save plot to a file
file_path = 'output/plot.png'
plt.savefig(file_path, format='png', bbox_inches='tight')
plt.close()
return file_path, gr.update(choices=stored_df1.Country.values.tolist()), gr.update(choices=stored_df2.Country.values.tolist())
def find_sentences_with_keywords(text, keywords):
# Split text into sentences using regular expression to match sentence-ending punctuation
sentences = re.split(r'(?<=[.!?])\s+', text)
matched_sentences = set() # Use a set to store unique sentences
# For each keyword, find sentences that contain the keyword as a whole word
for keyword in keywords:
keyword_pattern = re.compile(rf'\b{re.escape(keyword)}\b', re.IGNORECASE) # Using word boundaries
for sentence in sentences:
if keyword_pattern.search(sentence):
matched_sentences.add(sentence) # Add to set to ensure uniqueness
return list(matched_sentences) # Convert set back to list for consistent output
# Main function to process both PDFs based on the Excel file names and the sheet name
def process_pdfs_and_analyze_sentiment(file1, file2, sheet):
# Extract text from both PDFs based on the file name
pdf_file1 = file1.replace(".xlsx", ".pdf")
pdf_file2 = file2.replace(".xlsx", ".pdf")
text1, text2 =extract_and_paragraph(pdf_file1, pdf_file2, False)
# Use sheet name as the keyword to find relevant sentences
keywords = {
'GDP': ['GDP'],
'HICP': ['HICP'],
'RRE prices': ['RRE', 'residential'],
'CRE prices': ['CRE', 'commercial'],
'Unemployment': ['unemployment']
}
selected_keywords = keywords.get(sheet, [])
# Find sentences containing the keywords
sentences1 = find_sentences_with_keywords(text1, selected_keywords)
sentences2 = find_sentences_with_keywords(text2, selected_keywords)
# Concatenate all sentences for each PDF
text_pdf1 = "\n".join(sentences1)
text_pdf2 = "\n".join(sentences2)
# Perform sentiment analysis on the extracted sentences for each PDF
result_pdf1 = fin_ext_bis(text_pdf1)
result_pdf2 = fin_ext_bis(text_pdf2)
return result_pdf1, result_pdf2
#def change_choices(df):
# return gr.update(choices=df.Country.values.tolist())
def generate_text(df, country, theme):
# Filter the dataframe based on the country
row = df[df['Country'] == country].iloc[0]
# Convert the row to a string format for prompt
row_str = row.to_string(index=True)
simple_prompt = f"""
Here is the data for {theme} in {country}:
{row_str}
Summarize the adverse growth for {theme} in {country}. Highlight any increase or decrease compared to previous years and include the cumulative result.
"""
prompt = f"""
Here is an example of how to summarize adverse growth data for a given country with GDP as the theme:
Example for France (GDP):
Country: France
Adverse 2020: -0.427975
Adverse 2021: -1.987167
Adverse 2022: -1.195906
Adverse Cumulative: -3.573762
The theme is GDP.
Summary:
In the adverse scenario, the growth for GDP in France decreased by -0.427975% in 2020, worsened further by -1.987167% in 2021, and slightly improved by -1.195906% in 2022. The cumulative adverse growth is -3.573762%.
Now, summarize the data for {theme} in {country}:
{row_str}
Make sure to highlight changes compared to previous years, include the cumulative result if applicable and use 'increase' or 'decrease' to describe changes.
"""
# Generate the descriptive text using the model
result = table_to_text(prompt, max_length=200, temperature=0.7, top_p=0.9)[0]['generated_text']
return result
# Global variable
stored_paragraphs_1 = []
stored_paragraphs_2 = []
stored_df1 = []
stored_df2 = []
with gr.Blocks() as demo:
with gr.Tab("Financial Report Text Analysis"):
gr.Markdown("## Financial Report Paragraph Selection and Analysis on adverse macro-economy scenario")
with gr.Row():
# Upload PDFs
with gr.Column():
pdf1 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 1")
pdf2 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 2")
with gr.Column():
b1 = gr.Button("Extract and Display Paragraphs")
paragraph_1_dropdown = gr.Dropdown(label="Select Paragraph from PDF 1")
paragraph_2_dropdown = gr.Dropdown(label="Select Paragraph from PDF 2")
def update_paragraphs(pdf1, pdf2):
global stored_paragraphs_1, stored_paragraphs_2
stored_paragraphs_1, stored_paragraphs_2 = extract_and_paragraph(pdf1, pdf2, True)
updated_dropdown_1 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_1)]
updated_dropdown_2 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_2)]
return gr.update(choices=updated_dropdown_1), gr.update(choices=updated_dropdown_2)
b1.click(fn=update_paragraphs, inputs=[pdf1, pdf2], outputs=[paragraph_1_dropdown, paragraph_2_dropdown])
with gr.Row():
# Process the selected paragraph from PDF 1
with gr.Column():
gr.Markdown("### PDF 1 Analysis")
selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
summarize_btn1 = gr.Button("Summarize Text from PDF 1")
summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=2)
summarize_btn1.click(fn=lambda p: process_paragraph_1_sum(p), inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
sentiment_textbox_1 = gr.Textbox(label="Classification for PDF 1", lines=1)
sentiment_btn1.click(fn=lambda p: process_paragraph_1_sent(p), inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
analyze_btn1 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
analyze_btn1.click(fn=lambda p: process_paragraph_1_sent_tone(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1)
analyze_btn1_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
fin_spans_1_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 1 bis")
analyze_btn1_.click(fn=lambda p: process_paragraph_1_sent_tone_bis(p), inputs=paragraph_1_dropdown, outputs=fin_spans_1_)
# Process the selected paragraph from PDF 2
with gr.Column():
gr.Markdown("### PDF 2 Analysis")
selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
selected_paragraph_2.change(show, paragraph_2_dropdown, selected_paragraph_2)
summarize_btn2 = gr.Button("Summarize Text from PDF 2")
summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=2)
summarize_btn2.click(fn=lambda p: process_paragraph_2_sum(p), inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=1)
sentiment_btn2.click(fn=lambda p: process_paragraph_2_sent(p), inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
analyze_btn2 = gr.Button("Analyze Financial Tone on each sentence with yiyanghkust/finbert-tone")
fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
analyze_btn2.click(fn=lambda p: process_paragraph_2_sent_tone(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2)
analyze_btn2_ = gr.Button("Analyze Financial Tone on each sentence with ProsusAI/finbert")
fin_spans_2_ = gr.HighlightedText(label="Financial Tone Analysis for PDF 2 bis")
analyze_btn2_.click(fn=lambda p: process_paragraph_2_sent_tone_bis(p), inputs=paragraph_2_dropdown, outputs=fin_spans_2_)
with gr.Tab("Financial Report Table Analysis"):
# New tab content goes here
gr.Markdown("## Excel Data Comparison")
with gr.Row():
with gr.Column():
file1 = gr.Dropdown(choices=get_excel_files(PDF_FOLDER), label="Select Excel File 1")
file2 = gr.Dropdown(choices=get_excel_files(PDF_FOLDER), label="Select Excel File 2")
sheet = gr.Dropdown(choices=["GDP", "HICP", "RRE prices", "Unemployment", "CRE prices"], label="Select Sheet for File 1 and 2")
with gr.Column():
result = gr.Image(label="Comparison pLot")
def update_sheets(file):
return get_sheet_names(file)
b1 = gr.Button("Compare Data")
b2 = gr.Button("Extract text information")
with gr.Row():
with gr.Column():
sentiment_results_pdf1 = gr.HighlightedText(label="Sentiment Analysis - PDF 1")
country_1_dropdown = gr.Dropdown(label="Select Country from Excel File 1")
summarize_btn1_country = gr.Button("Summary for the selected country")
text_result_df1 = gr.Textbox(label="Sentence for excel file 1", lines=2)
summarize_btn1_country.click(fn=lambda country, theme: generate_text(stored_df1, country, theme),
inputs=[country_1_dropdown, sheet],
outputs=text_result_df1)
with gr.Column():
sentiment_results_pdf2 = gr.HighlightedText(label="Sentiment Analysis - PDF 2")
country_2_dropdown = gr.Dropdown(label="Select Country from Excel File 2")
summarize_btn2_country = gr.Button("Summary for the selected country")
text_result_df2 = gr.Textbox(label="Sentence for excel file 2", lines=2)
summarize_btn2_country.click(fn=lambda country, theme: generate_text(stored_df2, country, theme),
inputs=[country_2_dropdown, sheet],
outputs=text_result_df2)
# Button to extract text from PDFs and perform sentiment analysis
b1.click(fn=process_and_compare, inputs=[file1, sheet, file2, sheet], outputs=[result,country_1_dropdown, country_2_dropdown])
b2.click(fn=process_pdfs_and_analyze_sentiment, inputs=[file1, file2, sheet], outputs=[sentiment_results_pdf1, sentiment_results_pdf2])
demo.launch()