Spaces:
Running
Running
from transformers import BertTokenizer, BertModel | |
import torch | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
# Load BERT tokenizer and model | |
bert_model_name = "bert-base-uncased"#"yiyanghkust/finbert-tone" #"bert-base-uncased" | |
tokenizer = BertTokenizer.from_pretrained(bert_model_name) | |
model = BertModel.from_pretrained(bert_model_name) | |
model.eval() # Set to evaluation mode | |
# Function to obtain BERT embeddings | |
def get_bert_embeddings(texts): | |
"""Obtain BERT embeddings for a list of texts.""" | |
embeddings = [] | |
with torch.no_grad(): | |
for text in texts: | |
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True) | |
outputs = model(**inputs) | |
# Take the mean of token embeddings as the sentence embedding | |
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy() | |
embeddings.append(embedding) | |
return np.array(embeddings) | |
# Compute similarity matrices over embeddings | |
def compute_similarity(embeddings1, embeddings2): | |
"""Compute pairwise cosine similarity between two sets of embeddings.""" | |
return cosine_similarity(embeddings1, embeddings2) | |
def compare_selected_paragraph(paragraph, stored_paragraphs): | |
"""Compare the selected paragraph with stored paragraphs.""" | |
# Here, 'stored_paragraphs' would be available inside the function | |
# Perform the comparison | |
embeddings1 = get_bert_embeddings([paragraph]) # Get embedding for the selected paragraph | |
embeddings2 = get_bert_embeddings(stored_paragraphs) # Get embeddings for stored paragraphs | |
similarity_matrix = compute_similarity(embeddings1, embeddings2) | |
# Find the most similar paragraph | |
most_similar_index = np.argmax(similarity_matrix[0]) | |
most_similar_paragraph = stored_paragraphs[most_similar_index] | |
similarity_score = similarity_matrix[0][most_similar_index] | |
return f"Most similar paragraph {most_similar_index+1}: {most_similar_paragraph}\nSimilarity score: {similarity_score:.2f}" | |