Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -146,7 +146,7 @@ def process_and_compare(file1, sheet1, file2, sheet2):
|
|
146 |
plt.savefig(file_path, format='png', bbox_inches='tight')
|
147 |
plt.close()
|
148 |
|
149 |
-
return file_path
|
150 |
|
151 |
def find_sentences_with_keywords(text, keywords):
|
152 |
# Split text into sentences using regular expression to match sentence-ending punctuation
|
@@ -194,8 +194,8 @@ def process_pdfs_and_analyze_sentiment(file1, file2, sheet):
|
|
194 |
result_pdf2 = fin_ext_bis(text_pdf2)
|
195 |
|
196 |
return result_pdf1, result_pdf2
|
197 |
-
def change_choices(df):
|
198 |
-
return gr.update(choices=df.Country.values.tolist())
|
199 |
|
200 |
def generate_text(df, country, theme):
|
201 |
# Filter the dataframe based on the country
|
@@ -320,7 +320,6 @@ with gr.Blocks() as demo:
|
|
320 |
with gr.Column():
|
321 |
sentiment_results_pdf1 = gr.HighlightedText(label="Sentiment Analysis - PDF 1")
|
322 |
country_1_dropdown = gr.Dropdown(label="Select Country from Excel File 1")
|
323 |
-
country_1_dropdown.change(fn =change_choices, inputs= stored_df1, outputs= country_1_dropdown)
|
324 |
summarize_btn1_country = gr.Button("Summary for the selected country")
|
325 |
text_result_df1 = gr.Textbox(label="Sentence for excel file 1", lines=2)
|
326 |
summarize_btn1_country.click(fn=lambda country, theme: generate_text(stored_df1, country, theme),
|
@@ -330,7 +329,7 @@ with gr.Blocks() as demo:
|
|
330 |
sentiment_results_pdf2 = gr.HighlightedText(label="Sentiment Analysis - PDF 2")
|
331 |
|
332 |
# Button to extract text from PDFs and perform sentiment analysis
|
333 |
-
b1.click(fn=process_and_compare, inputs=[file1, sheet, file2, sheet], outputs=result)
|
334 |
b2.click(fn=process_pdfs_and_analyze_sentiment, inputs=[file1, file2, sheet], outputs=[sentiment_results_pdf1, sentiment_results_pdf2])
|
335 |
|
336 |
|
|
|
146 |
plt.savefig(file_path, format='png', bbox_inches='tight')
|
147 |
plt.close()
|
148 |
|
149 |
+
return file_path, stored_df1.Country.values.tolist()
|
150 |
|
151 |
def find_sentences_with_keywords(text, keywords):
|
152 |
# Split text into sentences using regular expression to match sentence-ending punctuation
|
|
|
194 |
result_pdf2 = fin_ext_bis(text_pdf2)
|
195 |
|
196 |
return result_pdf1, result_pdf2
|
197 |
+
#def change_choices(df):
|
198 |
+
# return gr.update(choices=df.Country.values.tolist())
|
199 |
|
200 |
def generate_text(df, country, theme):
|
201 |
# Filter the dataframe based on the country
|
|
|
320 |
with gr.Column():
|
321 |
sentiment_results_pdf1 = gr.HighlightedText(label="Sentiment Analysis - PDF 1")
|
322 |
country_1_dropdown = gr.Dropdown(label="Select Country from Excel File 1")
|
|
|
323 |
summarize_btn1_country = gr.Button("Summary for the selected country")
|
324 |
text_result_df1 = gr.Textbox(label="Sentence for excel file 1", lines=2)
|
325 |
summarize_btn1_country.click(fn=lambda country, theme: generate_text(stored_df1, country, theme),
|
|
|
329 |
sentiment_results_pdf2 = gr.HighlightedText(label="Sentiment Analysis - PDF 2")
|
330 |
|
331 |
# Button to extract text from PDFs and perform sentiment analysis
|
332 |
+
b1.click(fn=process_and_compare, inputs=[file1, sheet, file2, sheet], outputs={result,country_1_dropdown])
|
333 |
b2.click(fn=process_pdfs_and_analyze_sentiment, inputs=[file1, file2, sheet], outputs=[sentiment_results_pdf1, sentiment_results_pdf2])
|
334 |
|
335 |
|