Cachoups commited on
Commit
b68ccdf
·
verified ·
1 Parent(s): a8dfcdd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -54
app.py CHANGED
@@ -3,7 +3,6 @@ import gradio as gr
3
  from transformers import pipeline
4
  import spacy
5
  import lib.read_pdf
6
-
7
  # Initialize spaCy model
8
  nlp = spacy.load('en_core_web_sm')
9
  nlp.add_pipe('sentencizer')
@@ -71,72 +70,77 @@ with gr.Blocks() as demo:
71
  gr.Markdown("## Financial Report Paragraph Selection and Analysis")
72
 
73
  with gr.Row():
74
- # Layout for PDF 1 and PDF 2 side by side
75
  with gr.Column():
76
- gr.Markdown("### PDF 1 Analysis")
77
  pdf1 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 1")
 
 
 
78
  b1 = gr.Button("Extract and Display Paragraphs")
79
  paragraph_1_dropdown = gr.Dropdown(label="Select Paragraph from PDF 1")
80
- selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
81
- summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=4)
82
- sentiment_textbox_1 = gr.Textbox(label="Classification for PDF 1", lines=4)
83
- fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
84
 
85
  def update_paragraphs(pdf1, pdf2):
86
  global stored_paragraphs_1, stored_paragraphs_2
87
  stored_paragraphs_1, stored_paragraphs_2 = extract_and_summarize(pdf1, pdf2)
88
  updated_dropdown_1 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_1)]
89
  updated_dropdown_2 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_2)]
90
- return gr.update(choices=updated_dropdown_1), gr.update(choices=updated_dropdown_2)
91
-
92
- def process_paragraph_1(paragraph):
93
- try:
94
- paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
95
- selected_paragraph = stored_paragraphs_1[paragraph_index]
96
- summary = summarize_text(selected_paragraph)
97
- sentiment = text_to_sentiment(selected_paragraph)
98
- fin_spans = fin_ext(selected_paragraph)
99
- return selected_paragraph, summary, sentiment, fin_spans
100
- except (IndexError, ValueError):
101
- return "Invalid selection", "Error", "Error", []
102
 
103
  b1.click(fn=update_paragraphs, inputs=[pdf1, pdf2], outputs=[paragraph_1_dropdown, paragraph_2_dropdown])
104
- summarize_btn1 = gr.Button("Summarize Text from PDF 1")
105
- sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
106
- analyze_btn1 = gr.Button("Analyze Financial Tone and FLS")
107
 
108
- summarize_btn1.click(fn=lambda p: process_paragraph_1(p)[1], inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
109
- sentiment_btn1.click(fn=lambda p: process_paragraph_1(p)[2], inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
110
- analyze_btn1.click(fn=lambda p: process_paragraph_1(p)[3], inputs=paragraph_1_dropdown, outputs=fin_spans_1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
 
112
- with gr.Column():
113
- gr.Markdown("### PDF 2 Analysis")
114
- pdf2 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 2")
115
- b2 = gr.Button("Extract and Display Paragraphs")
116
- paragraph_2_dropdown = gr.Dropdown(label="Select Paragraph from PDF 2")
117
- selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
118
- summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=4)
119
- sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=4)
120
- fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
121
-
122
- def process_paragraph_2(paragraph):
123
- try:
124
- paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
125
- selected_paragraph = stored_paragraphs_2[paragraph_index]
126
- summary = summarize_text(selected_paragraph)
127
- sentiment = text_to_sentiment(selected_paragraph)
128
- fin_spans = fin_ext(selected_paragraph)
129
- return selected_paragraph, summary, sentiment, fin_spans
130
- except (IndexError, ValueError):
131
- return "Invalid selection", "Error", "Error", []
132
-
133
- b2.click(fn=update_paragraphs, inputs=[pdf1, pdf2], outputs=[paragraph_1_dropdown, paragraph_2_dropdown])
134
- summarize_btn2 = gr.Button("Summarize Text from PDF 2")
135
- sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
136
- analyze_btn2 = gr.Button("Analyze Financial Tone and FLS")
137
-
138
- summarize_btn2.click(fn=lambda p: process_paragraph_2(p)[1], inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
139
- sentiment_btn2.click(fn=lambda p: process_paragraph_2(p)[2], inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
140
- analyze_btn2.click(fn=lambda p: process_paragraph_2(p)[3], inputs=paragraph_2_dropdown, outputs=fin_spans_2)
141
 
142
  demo.launch()
 
3
  from transformers import pipeline
4
  import spacy
5
  import lib.read_pdf
 
6
  # Initialize spaCy model
7
  nlp = spacy.load('en_core_web_sm')
8
  nlp.add_pipe('sentencizer')
 
70
  gr.Markdown("## Financial Report Paragraph Selection and Analysis")
71
 
72
  with gr.Row():
73
+ # Upload PDFs
74
  with gr.Column():
 
75
  pdf1 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 1")
76
+ pdf2 = gr.Dropdown(choices=get_pdf_files(PDF_FOLDER), label="Select PDF 2")
77
+
78
+ with gr.Column():
79
  b1 = gr.Button("Extract and Display Paragraphs")
80
  paragraph_1_dropdown = gr.Dropdown(label="Select Paragraph from PDF 1")
81
+ paragraph_2_dropdown = gr.Dropdown(label="Select Paragraph from PDF 2")
 
 
 
82
 
83
  def update_paragraphs(pdf1, pdf2):
84
  global stored_paragraphs_1, stored_paragraphs_2
85
  stored_paragraphs_1, stored_paragraphs_2 = extract_and_summarize(pdf1, pdf2)
86
  updated_dropdown_1 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_1)]
87
  updated_dropdown_2 = [f"Paragraph {i+1}: {p[:100]}..." for i, p in enumerate(stored_paragraphs_2)]
88
+ return gr.update(choices=updated_dropdown_1),gr.update(choices=updated_dropdown_2)
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  b1.click(fn=update_paragraphs, inputs=[pdf1, pdf2], outputs=[paragraph_1_dropdown, paragraph_2_dropdown])
 
 
 
91
 
92
+ with gr.Row():
93
+ # Process the selected paragraph from PDF 1
94
+ with gr.Column():
95
+ gr.Markdown("### PDF 1 Analysis")
96
+ selected_paragraph_1 = gr.Textbox(label="Selected Paragraph 1 Content", lines=4)
97
+ summarize_btn1 = gr.Button("Summarize Text from PDF 1")
98
+ sentiment_btn1 = gr.Button("Classify Financial Tone from PDF 1")
99
+ summary_textbox_1 = gr.Textbox(label="Summary for PDF 1", lines=4)
100
+ sentiment_textbox_1 = gr.Textbox(label="Classification for PDF 1", lines=4)
101
+ fin_spans_1 = gr.HighlightedText(label="Financial Tone Analysis for PDF 1")
102
+
103
+ def process_paragraph_1(paragraph):
104
+ try:
105
+ paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
106
+ selected_paragraph = stored_paragraphs_1[paragraph_index]
107
+ summary = summarize_text(selected_paragraph)
108
+ sentiment = text_to_sentiment(selected_paragraph)
109
+ fin_spans = fin_ext(selected_paragraph)
110
+ return selected_paragraph, summary, sentiment, fin_spans
111
+ except (IndexError, ValueError):
112
+ return "Invalid selection", "Error", "Error", []
113
+
114
+ summarize_btn1.click(fn=lambda p: process_paragraph_1(p)[1], inputs=paragraph_1_dropdown, outputs=summary_textbox_1)
115
+ sentiment_btn1.click(fn=lambda p: process_paragraph_1(p)[2], inputs=paragraph_1_dropdown, outputs=sentiment_textbox_1)
116
+ analyze_btn1 = gr.Button("Analyze Financial Tone and FLS")
117
+ analyze_btn1.click(fn=lambda p: process_paragraph_1(p)[3], inputs=paragraph_1_dropdown, outputs=fin_spans_1)
118
+
119
+ # Process the selected paragraph from PDF 2
120
+ with gr.Column():
121
+ gr.Markdown("### PDF 2 Analysis")
122
+ selected_paragraph_2 = gr.Textbox(label="Selected Paragraph 2 Content", lines=4)
123
+ summarize_btn2 = gr.Button("Summarize Text from PDF 2")
124
+ sentiment_btn2 = gr.Button("Classify Financial Tone from PDF 2")
125
+ summary_textbox_2 = gr.Textbox(label="Summary for PDF 2", lines=4)
126
+ sentiment_textbox_2 = gr.Textbox(label="Classification for PDF 2", lines=4)
127
+ fin_spans_2 = gr.HighlightedText(label="Financial Tone Analysis for PDF 2")
128
+
129
+ def process_paragraph_2(paragraph):
130
+ try:
131
+ paragraph_index = int(paragraph.split(':')[0].replace('Paragraph ', '')) - 1
132
+ selected_paragraph = stored_paragraphs_2[paragraph_index]
133
+ summary = summarize_text(selected_paragraph)
134
+ sentiment = text_to_sentiment(selected_paragraph)
135
+ fin_spans = fin_ext(selected_paragraph)
136
+ return selected_paragraph, summary, sentiment, fin_spans
137
+ except (IndexError, ValueError):
138
+ return "Invalid selection", "Error", "Error", []
139
+
140
+ summarize_btn2.click(fn=lambda p: process_paragraph_2(p)[1], inputs=paragraph_2_dropdown, outputs=summary_textbox_2)
141
+ sentiment_btn2.click(fn=lambda p: process_paragraph_2(p)[2], inputs=paragraph_2_dropdown, outputs=sentiment_textbox_2)
142
+ analyze_btn2 = gr.Button("Analyze Financial Tone and FLS")
143
+ analyze_btn2.click(fn=lambda p: process_paragraph_2(p)[3], inputs=paragraph_2_dropdown, outputs=fin_spans_2)
144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
  demo.launch()