Spaces:
Running
Running
Create comparison1.py
Browse files- lib/comparison1.py +42 -0
lib/comparison1.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load the pre-trained sentence transformer model
|
6 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
7 |
+
|
8 |
+
# Get sentence embeddings for a single paragraph
|
9 |
+
def get_single_sentence_embedding(paragraph):
|
10 |
+
"""Obtain embeddings for a single paragraph using a sentence transformer."""
|
11 |
+
embedding = model.encode([paragraph], convert_to_tensor=True)
|
12 |
+
return embedding
|
13 |
+
|
14 |
+
# Get sentence embeddings for a list of paragraphs
|
15 |
+
def get_sentence_embeddings(paragraphs):
|
16 |
+
"""Obtain embeddings for a list of paragraphs using a sentence transformer."""
|
17 |
+
embeddings = model.encode(paragraphs, convert_to_tensor=True)
|
18 |
+
return embeddings
|
19 |
+
|
20 |
+
# Compute similarity matrices over embeddings
|
21 |
+
def compute_similarity(embeddings1, embeddings2):
|
22 |
+
"""Compute pairwise cosine similarity between two sets of embeddings."""
|
23 |
+
return cosine_similarity(embeddings1.cpu().numpy(), embeddings2.cpu().numpy())
|
24 |
+
|
25 |
+
# Compare a single selected paragraph with a list of stored paragraphs
|
26 |
+
def compare_selected_paragraph(paragraph, stored_paragraphs):
|
27 |
+
"""Compare the selected paragraph with stored paragraphs."""
|
28 |
+
# Get embedding for the selected paragraph
|
29 |
+
embedding1 = get_single_sentence_embedding(paragraph)
|
30 |
+
|
31 |
+
# Get embeddings for the stored paragraphs
|
32 |
+
embeddings2 = get_sentence_embeddings(stored_paragraphs)
|
33 |
+
|
34 |
+
# Compute similarity
|
35 |
+
similarity_matrix = compute_similarity(embedding1, embeddings2)
|
36 |
+
|
37 |
+
# Find the most similar paragraph
|
38 |
+
most_similar_index = np.argmax(similarity_matrix[0])
|
39 |
+
most_similar_paragraph = stored_paragraphs[most_similar_index]
|
40 |
+
similarity_score = similarity_matrix[0][most_similar_index]
|
41 |
+
|
42 |
+
return f"Most similar paragraph {most_similar_index + 1}: {most_similar_paragraph}\nSimilarity score: {similarity_score:.2f}"
|