from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import numpy as np # Load the pre-trained sentence transformer model model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') # Get sentence embeddings for a single paragraph def get_single_sentence_embedding(paragraph): """Obtain embeddings for a single paragraph using a sentence transformer.""" embedding = model.encode([paragraph], convert_to_tensor=True) return embedding # Get sentence embeddings for a list of paragraphs def get_sentence_embeddings(paragraphs): """Obtain embeddings for a list of paragraphs using a sentence transformer.""" embeddings = model.encode(paragraphs, convert_to_tensor=True) return embeddings # Compute similarity matrices over embeddings def compute_similarity(embeddings1, embeddings2): """Compute pairwise cosine similarity between two sets of embeddings.""" return cosine_similarity(embeddings1.cpu().numpy(), embeddings2.cpu().numpy()) # Compare a single selected paragraph with a list of stored paragraphs def compare_selected_paragraph(paragraph, stored_paragraphs): """Compare the selected paragraph with stored paragraphs.""" # Get embedding for the selected paragraph embedding1 = get_single_sentence_embedding(paragraph) # Get embeddings for the stored paragraphs embeddings2 = get_sentence_embeddings(stored_paragraphs) # Compute similarity similarity_matrix = compute_similarity(embedding1, embeddings2) # Find the most similar paragraph most_similar_index = np.argmax(similarity_matrix[0]) most_similar_paragraph = stored_paragraphs[most_similar_index] similarity_score = similarity_matrix[0][most_similar_index] return f"Most similar paragraph {most_similar_index + 1}: {most_similar_paragraph}\nSimilarity score: {similarity_score:.2f}"